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Abstract 

In this study, we considered an inflationary inventory control model under non-
deterministic conditions. We assumed the inflation rate as a normal distribution, 
with any arbitrary probability density function (pdf). The objective function was to 
minimize the total discount cost of the inventory system. We used two methods to 
solve this problem. One was the classic numerical approach which turned out to be 
prohibitively difficult. The other was a proposed combination method which used 
Simpson approximation and particle swarm optimization (PSO). To illustrate the 
theoretical results, we have provided numerical examples. 
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Introduction 

In recent years, a large number of studies have focused on inventory 
management systems. For the majority of these studies, one of two 
procedures have been used. The first procedure determines the optimal 
values of the decision system variables by minimizing the average 
annual cost. The second (and, in theory, more correct) procedure 
determines the optimal ordering policy by minimizing the discounted 
value of all future costs (Mirzazadeh, 2007, pp. 658-666). Thus, each 
model has a different scope, parameter and method for solving. The 
problem is finding the time performance of the proposed method for 
solving the complex inventory models in order to determine the 
optimal decision parameter. In this study, we used an inflationary 
inventory model under stochastic condition with two unknown 
parameters. These parameters were (k) proportion of time in any given 
inventory cycle and (T) replenishment time inventory.  

Figure 1 shows the scope and parameters of the inventory models 
with the most deteriorating items (Li & Mawhinney, 2010). In this 
study, we considered these models with the inflation rate. It is 
important to note that the rate can be deterministic or stochastic. After 
describing the resulting models, we considered the methods to solve 
them. We proposed a combination method using Simpson's rules– 
particle swarm optimization.  
 

 
 
  

 
 
 
 
 
 
 
 
 

Fig. 1. Deteriorating item inventory review 
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subject to different types of pricing policies. Misra (1979) developed a 
discounted cost model and included the internal (company) and 
external (general economy) inflation rates for various costs associated 
with an inventory system. Sarker and Pan (1994) surveyed the effects 
of inflation and time value of money on the order quantity with finite 
replenishment rate. Other studies considered variable demands, such 
as Vrat and Padmanabhan (1990), Datta and Pal (1991), Hariga and 
Ben-Daya (1996) and Chung (2003).  

In most real-life situations, inflation is uncertain and unstable. 
Horowitz (2000) discussed an EOQ model with a normal distribution 
for the inflation rate. Furthermore, Mirzazadeh and Sarfaraz (1997) 
presented a multiple item inventory system with a budget constraint 
and a uniform distribution function for the external inflation rate. 
Additionally, Mirzazadeh presented the impact of uncertain 
inflationary conditions on inventory models using the average annual 
cost and the discounted cost (Mirzazadeh, 2007, pp. 658-666). In more 
recent research, Yang and Chang (2013) investigated a two-warehouse 
partial backlogging inventory model for deteriorating items with 
permissible delay in payment under inflation. Moreover, Lubik and 
Teo (2012) checked inventories, inflation dynamics and the New 
Keynesian Phillips curve. At the same time, Yang (2012) presented 
two-warehouse partial backlogging inventory models with three-
parameter Weibull distribution deterioration under inflation. 
Meanwhile, Neetu and Tomer (2012) presented a deteriorating 
inventory model under variable inflation where the supplier credits 
were linked to order quantity. 

Previous studies of inventory systems have used the classical 
numerical method. In this paper, to minimize the discount cost method 
in the inflationary inventory model, we proposed a combined method. 
This involved Simpson's rules and the particle swarm optimization. 

Particle swarm optimization (PSO) is a population-based stochastic 
optimization technique. It is based on the social behaviours observed 
in animals or insects, e.g., bird flocking, fish schooling and animal 
herding (Blum & Merkle, 2011). It was originally proposed by James 
Kennedy and Russell Eberhart (1995). In PSO, individual particles of 
a swarm represent potential solutions which move through the 
problem search space, seeking an optimal or satisfactory solution. The 
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particles broadcast their current positions to neighbouring particles. 
The position of each particle is adjusted according to its velocity (i.e., 
rate of change) and the difference between the best position found by 
its neighbours and the best position it has found so far. As the model 
is iterated, the swarm increasingly focuses on an area of the search 
space which contains high-quality solutions.  

The following series of papers considered PSO for optimizing 
decision variables in the inventory control and supply chain 
management. Most of them used simple or hybrid methods with 
changed or combined parameters of PSO with other algorithms to find 
the answer: Sedighizadeh and Masehian (2009); Orand, Mirzazadeh, 
and Ahmadzadeh (2012); Parsopoulos, Skouri and Vrahatis (2008); 
Fatih Taşgetiren and Liang (2003); Tsai and Yeh (2008); Hsu, Tsou 
and Yu (2009); Chen and Su (2009); Domoto, Okuhara, Ueno and 
Ishii (2007); Varga, Király and Abonyi (2013); Goh Sue-Anna, S.G. 
Ponnambalama and N. Jawahar (2012), etc. Following these studies, 
the objective of this paper was to assess the performance of a method 
which solved the complex model with multi parameters. Hence, we 
combined PSO and Simpson’s methods to optimize the discount cost 
value under the following assumptions.  

The Assumption and Notations of the Model 

Our development of the mathematical model of the discount cost was 
based on the following assumptions: 

 The inflation rate is a random variable with normal distribution.  
 The demand rate is known and constant.  
 Shortages are allowed and fully backlogged.  
 The replenishment is instantaneous and the replenishment cycle 

is the same for each period.  
 Lead time is negligible and the initial inventory level is zero.  
 The time horizon is infinite.  
 A constant fraction of the on-hand inventory deteriorates per 

unit time, as soon as the item is received into inventory 
(Mirzazadeh, 2007, pp. 658-666).  

The following notations were used in the mathematical model: 
 Inflation rate per unit time  
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 Probability density function (pdf) of  
 Mean value of  
 Standard deviation of 
 Interest rate per unit time  
 Demand rate per unit time  
 Constant deterioration rate, where 0<θ<1  
 Inventory holding cost (for ) and shortage cost (for ) per unit per 

unit time at time zero  
 Per unit purchase cost of the item at time zero  
 Ordering cost per order at time zero  
 Replenishment time interval  
 Proportion of time in any given inventory cycle, which orders 

can be filled from the existing stock 
 EDC Expected present value of costs  
 Number of Particle  
 Iteration 
 Position particle in the iteration 
 Velocity particle in the iteration  
 Fitness particle in the iteration 
 Best personal position of particle in the iteration 
 Best group position of particles in the iteration 
 Cognitive (individual) learning rate 
 Social (group) learning rate 
 Uniformly distributed random numbers in the range 0 and 1 
 Coefficient of improvement PSO 

The Discounted Cost Model 

According to the inventory system costs, we considered EDCR, 
EDCP, EDCH and EDCS as the expected present value of the 
ordering, purchasing, carrying and shortage, respectively (for further 
elaboration, see reference Mirzazadeh, 2007, pp. 658-666). The 
expected present value of the replenishment cost of the (j+1) the cycle, 
was:  

                           (1) 
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Therefore, the expected present value of the total replenishment 
cost was given by: 

                    
         

 

 -               (2) 

We also assumed that the expected present value of the purchase 
cost for the first cycle was: 

    1            1      1-k                   (3) 
 
Similarly for EDCR, the expected present value of the total 

purchase cost was: 

                1      1-k                       
  0     (4) 

After simplifying, we had: 

     
  

 
      1   

1
 -              1-k    

1
1-          1      (5) 

 
The expected present value of the holding cost of the first cycle 

was: 
    1     1   1

  

0      
       1  1    

 1              1             1  
             

   (6) 

Hence, the expected present value for the total holding cost was: 

            1
 
  0              

                1             1  
              1-         

         (7) 

 
The expected present value of the shortages cost of the first cycle 

was: 
    1      2   2

  -k  
0

     
       2  2 

            
 2               +                     

     2   (8) 

Thus, the expected present value for the total shortages cost was: 

    1          
 
                

                  +1                    

     2            
       (9) 

Consequently, the total expected discounted cost of the system was 
given by: 

                                                 (10) 
EDC (k,T) is a multidimensional unconstrained optimization model 
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and we tried to optimize decision parameters k, T for obtaining an 
optimum ordering policy. 

Particle Swarm Optimization 

Particle swarm optimization (or PSO) is an evolutionary 
computational method. It is based on swarm intelligence and the 
 ehavior of a colony or swarm of insects such as ants or bees, a flock 
of birds or a school of fish (Rao, 2009, p. 725). This algorithm is 
based on the adaptive culture model and particle swarm which was 
first proposed by Kennedy and Eberhart in 1995. Kennedy theorized 
that the process of cultural adaptation comprises a high-level 
component. This is seen in the formation of patterns across 
individuals, the ability to solve problems, a low-level component, as 
well as the actual – and probably universal- behaviours of individuals. 
These can be summarized in terms of three principles (Kennedy et al., 
2001, p.287): 

1. Evaluate 
2. Compare 
3. Imitate 
According to these principles, training and learning do not occur 

unless these principles take place in society. Hence, Kennedy and 
Eberhart prepared a mathematical model of this algorithm which was 
developed based on the following model:  

- When one bird locates a target or food (or maximum of the 
objective function), it instantaneously transmits the information 
to all other birds. 

- All other birds gravitate to the target or food (or maximum of 
the objective function) but not directly. 

- There is a component of each bird’s own independent thinking, 
as well as its past memory (S. Rao, 2009, p.725; Kennedy, 
Eberhard & Shi, 2001, p.287). 

a) The Algorithm 

 The following steps explain the method (S. Rao, 2009, p. 726): 
 Assume the particle size N (number of particles). 
 Generate an initial population of X in the range X(l) and X(u) 

randomly as X1,X2, . . . ,XN. (assume that i) and evaluate the 
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function. 
 Find the velocities of particles. All particles will move to an 

optimal point at a certain velocity. The velocity is zero. 

Vj
 i =Vj

 i-1 +C1r1  Pbest,j-Xj
 i-1 

 +C2r2  Gbest-Xj
 i-1 

       (11) 

here C1 and C2 are the cognitive (individual) and social (group) 
learning rates, respectively, and r1 and r2 are uniformly distributed 
random numbers in the range 0 to 1. The parameters C1 and C2 denote 
the relative importance of the memory (position) of the particle itself 
to the memory (position) of the swarm. The values of C1 and C2 are 
usually assumed to be 1 so that C1r1 and C2r2 ensure that the particles 
would overfly the target about half the time. Furthermore, Pbest,j and 
Gbest are the highest values of the objective functions for particle j and 

the highest values of the objective function f Xj
 i 

  encountered in all 
previous iterations by any of the N particles, respectively (Rao, 2009, 
p.726). 

 Find the position or coordinate of jth particles in ith iteration as:  

Xj
 i =Xj

 i-1 +Vj
 i   j=1,2,N,N                    (12) 

here a time step of unity is assumed in the velocity term in Equation 
(12). Evaluate the objective function values corresponding to the 
particles as f  X1

 i 
 ,f  X2

 i 
 ,…,f  XN

 i 
 . 

 Check the convergence of the algorithm if the algorithm has 
converged. Otherwise, stop updating iterations from to and start 
from Step 3. 

b) Improvement PSO 

Usually, the particle velocities build up too fast and the maximum of 
the objective function is skipped. Hence, an inertia term is added to 
reduce the velocity. The value of this is generally assumed to vary 
linearly from 0.9 to 0.4 as the iterative process progresses. The 
velocity of the particle, with the inertia term, is assumed as (Rao, 
2009). 
 

Vj
 i =θVj

 i-1 +C1r1  Pbest,j-Xj
 i-1 

 +C2r2  Gbest-Xj
 i-1 

    (13) 

w 

w 
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The inertia weight θ was originally introduced by Shi and Eberhart 
in 1999. It compares to the original PSO algorithm in Equation (11). 
(Shi & Eberhart, 1998). 

Simpson's Rules  

In the numerical analysis, one method for numerical integration is 
Simpson's rule or Simpson’s method. It divides the interval into 
smaller intervals, placing them in the integral formula. The smaller 
integrals are combined into a single unit to obtain the value of the 
function. 

a) Composite Simpson’s Rule 

If the interval of integration is "small", then Simpson's rule will 
provide an adequate approximation of the exact integral. By small, 
what we really mean is that the function being integrated is relatively 
smooth over the interval. A smooth quadratic interpolate, like the one 
used in Simpson's rule, will give good results. 

However, it is often the case that the function we are trying to 
integrate is not smooth over the interval. Typically, this means that 
either the function is highly oscillatory or it lacks derivatives at certain 
points. In such cases, Simpson's rule may give very poor results. One 
common way to handle this problem is to break the interval up into a 
number of small subintervals. Simpson's rule is then applied to each 
subinterval, with the results being summed to produce an 
approximation for the integral over the entire interval. This sort of 
approach is termed the composite Simpson's rule and is denoted by the 
following (Jeffrey & Dai, 1995, p.364; Wikipedia, 2012; Chapra, 
2005, p.475): 

 

 f x dx= h
3
 f a +f b 22  f x2k 

 n 2  -1
k=1 44  f  x2k-1 

n 2 
k=1  +Rn

b
a        (14) 

here  n is an even integer number, h=  b-a n , 
xk=a+ h fo r  =0, 1, 2,…, n, the error committed by the composite 
Simpson's rule is bounded (in absolute value) by:  

Rn  -  b-a h4

180
f 4  ξ   - nh5

180
f 4  ξ . 

w 
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The Numerical Example  

In this section, we provide two methods to solve this problem. The 
first is the classic numerical optimization method and the second is the 
composite Simpson’sξrulesξ– PSO method. The first method only 
contains composite Simpson’s rules and differential which you can 
see in the reference (Mirzazadeh, 2007). However, in the second 
method, we first use Simpson’s method and afterwards, obtain two 
parameters that we want to be optimized. Following this, we use PSO 
to optimize the two parameters K and T. The values of the model 
parameters for the former method are as follows:  

D=1000 units/year, A=$60/order, c=$1/unit, c1=$0.2/ unit/ year, 
c2=$0.6/ unit/ year, r= $0.2/$/ year and  =0.25.  

The inflation rate has the normal distribution function. The 
discount cost model that we showed with EDC (k,T) was an objective 
of this model. It was a multidimensional unconstrained optimization 
model. Hence, there were many optimization methods to solve the 
model. However, it is important to note that the points of this model 
have many parameters, with normal probability density function (pdf). 
Thus, derivative and integral makes an objective function more 
complex. For this reason, we faced constraints in choosing a solving 
method. We first tried a simple PSO to solve this model. After running 
the algorithm, we observed that the generated particles could not find 
a way to optimize point. This was because of complex integrals in the 
objective function and a lack of answer. Consequently, we combined 
PSO with Simpson approximation until the simplification function 
found the minimum of discount cost model. At first, we changed the 
function into Simpson's rules and obtained a function with two 
unknown decisions parameters, k and T. We then ran PSO. After 
doing this, the particles found their way to optimum point. For more 
details, see the following flow chart. 

After running this application in C # we realized that the results of 
the Simpson method with N = 4 equaled the optimal values obtained 
in previous research (for further elaboration, see Mirzazadeh, 2007, 
pp.658-555). Thus, we changed the value of the N parameter in the 
Simpson’s method. We observed that the function was reduced. This 
reduction continued until the value did not equal zero. This was 



 Optimization of the Inflationary Inventory Control Model under Stochastic ...        213 

 

because in point of r the objectives function moved to infinity. Hence, 
in point of near r = i the value of the objective function was very high 
and in other points, we observed the lower value of it. We initialized 
N, trying to obtain the best N for a good local minimum. Here, we 
investigated the values of   in Simpson’s rules from   to 160. After 
obtaining a desired N value through the Simpson method, we 
investigated the convergence parameters of the PSO. For further 
elaboration, see Figure 3. 

 

 
Fig. 2. Simpson's rules – particle swarm optimization 
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Fig. 3. Graphical representation of function EDC (k, T) with combination of Simpson and PSO for 

different N in Simpson’s rules 

 
The parameters of the algorithm were as follows: N=30, i=100 C1, 

C2=1 and r1, r2= random value in each iteration. The value of   is 
usually assumed to vary linearly from 0.9 to 0.4 as the iterative 
process progresses. Following the algorithm parameters, we used   = 
0.4 to reduce our velocity of particles to guarantee PSO convergence. 
The k and T values of the decision variables and fitness value of the 
function are shown in the following diagram: 

 

 
 

Fig. 4. Graphical representation convergence k parameter for Simpson N=52 
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Fig. 5. Graphical representation convergence T parameter for Simpson N=52 

 

 
 

Fig. 6. Graphical representation convergence of function for Simpson N=52 

 

 
Fig. 7. Graphical representation of EDC (k, T) for 0≤T≤3 
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The computational time of the algorithm was 100 milliseconds. 
The following table compares the results of this paper and those of 
previous studies. 

Table 1 Optimal solution EDC (k, T) 

Method N Simpson Time         C       

Classical Method 4 4.46s 0.47843 0.67 98160.71 

Particle Swarm 
Optimization 52 100ms 0.24500195 0.814401455 3100.112845 

It is important to note that previous studies used Maple software, 
Simpson's rule and classical mathematical methods. In this paper, we 
used C# programming, PSO and a composite of Simpson's rule. 
However, in Maple, we first used Simpsons method. After obtaining 
two unknown parameters, we used differential to optimize k and T. 
Hence, due to the complex objective function, Maple did not seem to 
be a good program to complete this computation. In our method, we 
reduced the steps of calculation. Moreover, in equation condition, we 
obtained better optimized parameters. We prepared a parameter tuning 
on algorithm for more precision and checking computation time of the 
objective function for different PSO parameters. This is shown in 
Table 2. 

Table 2. PSO parameter tuning of function for Simpson N=52 

N C1 C2 e Iteration EDC (k , T) Time(Milliseconds) 

20 0.8 0.8 0.9 100 3100.1128 76 

25 0.85 0.85 0.8 150 3100.1128 132 

30 0.9 0.9 0.7 200 3100.1128 202 

35 1 1 0.6 250 3100.1128 292 

45 1.4962 1.4962 0.7968 300 3100.1128 448 
 

Conclusion 

In this paper, we combined PSO and composite Simpson’s rule for the 
optimization of a complex inventory model. The combination method 
helped the algorithm find a way to obtain decision parameter in 
models with complex integrals in PSO. In such models, particles 
cannot find the best way to reach an optimum point but the 
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combination method can improve it. Using classical methods yields 
the same results as using a combination method. Thus, we checked the 
time taken in each, as well as the number of steps. Our results showed 
that the combination method takes fewer steps and is faster than the 
old method. Given these findings, it seems clear that a combination 
method can help to optimize complex methods with mentioned 
specifications. Furthermore, it can reduce the number of steps and 
computation time of these models and help to find a better way to 
solve more complex inventory model with lower computation time in 
sensitivity analyses. Future research: 1. combine other algorithms with 
composite Simpson's rule, 2. combine other numerical method with 
Particle Swarm Optimization, 3. check the use of combined method 
for other complex formulae in the real world and other complex 
inventory control models. 
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