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Abstract 

This article examines a new approach which solves Linear Programming (LP) 
problems with stochastic parameters as a generalized model of the fuzzy 
mathematical model analyzed by Verdegay. An expectation model is provided for 
solving the problem. A multi-parametric programming is applied to access to a 
solution with different desired degrees as well as problem constraints. Additionally, 
we present a numerical example to demonstrate the state and method efficiency. 
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Introduction 

Fuzzy Linear Programming (FLP) programs will appear when a kind 
of ambiguity is occurred in the parameters of the model and/or in the 
lack of deterministic information in the classical linear programming 
(LP) programs. In this case, the mentioned model will be established 
based on a type of ambiguity instead of the crisp data such as fuzzy 
inputs and so on. In the literature of fuzzy optimization, there are a lot 
of researches which are focused on fuzzy linear programming. An 
interesting approach is using parametric programming methods in the 
fuzzy linear programming. Afterward, various types of LP problems 
along with their solving methods have been presented by different 
authors. Also, this is important to distinguish between flexibility and 
uncertainty which appears in the parameters of models including the 
aim coefficients, the coefficients matrix, and its constraints and also in 
the right-hand-side data. Flexibility concept is modeled using 
fuzziness and reflects the concept that feasibility of the solutions for 
every constraint will be valid based on its satisfaction degree. 
Furthermore, every constraint has an accepted tolerance which is 
predetermined by the decision maker. Moreover, there is uncertainty 
that concerns an objective variability in the desired model parameters 
(random uncertainty) or the lack of some information of the parameter 
values.  

Verdegay (1982) showed that an LP problem with the crisp target 
and some fuzzy constraints is equal to a common parametric LP 
model and thus, we are able to use parametric approaches to solve 
these FLP problems. Cadenas and Verdegay (2000) provided a multi-
objective LP problem, where the objective coefficients in the objective 
function appeared as fuzzy numbers, and also applied fuzzy ordering 
approach to solve these models. Nasseri and Bavandi (2017) 
considered a Stochastic Interval-Valued Linear Fractional 
Programming (SIVLFP) problem, where in their model, the 
coefficients and scalars of the objective function are fractional 
intervals, and technological coefficients and the quantities of the 
constraints in the mentioned model were random variables with the 
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specific distribution. Also, an interactive approach was proposed for 
Multi-Objective Fuzzy Stochastic Linear Programming (MOFSLP) 
program by Mohan and Nguyen (2001). After that, Iskander (2003) 
employed a state of fuzzy weighted objective function to solve a 
MOFSLP problem. Also after that, other kind of LP with fuzzy 
random coefficient is studied by some authors (Iskander, 2004a; 
Iskander, 2004b; Iskander, 2005). Furthermore, Stochastic Linear 
Programming (SLP) is studied by Ben Abdelaziz and Masri (2005), in 
which they used fuzzy and/or crisp inequality for every constraint 
instead of the probability distribution. In fact, they used the α−cut 
approach for defuzzifing the associated probability distribution. 
Nasseri et al. (2005) considered a FLP problem and suggested simplex 
method to solve these programs using linear ranking functions. In the 
current decade, also some serious studies are investigated in the 
literature. One of these works is given by Luhandjula (2006). In this 
work, the author presented a survey of the essential models and 
methods which are presented on fuzzy stochastic programming area. 
For Goal Programming with Fuzzy Stochastic parameters (FSGP) 
problem, where all parameters are considered as kind of fuzzy random 
variables, Hop (Hop, 2007a; Hop, 2007b; Hop, 2007c) introduced a 
novel approach for solving these problems. Rommelfanger (2007) 
studied an LP with multi-criteria crisp, fuzzy or also stochastic values. 
Recently, Attari and Nasseri (2014) introduced a novel concept for the 
Fuzzy Mathematical Programming (FMP) which concerns the 
feasibility of the optimal solutions of these models as an extension of 
the classical concept of feasibility, also it has appeared in the literature 
of operations research. They just consider fuzziness in the constraints 
of the mentioned model while in the many real situations a kind of 
ambiguity is occurred in the objective coefficients. So, we are going to 
extend their model to a generalized form, which the objective 
coefficients are including stochastic parameters. Based on Verdegays̕ 
method which is applied for fuzzy linear programming, we suggest an 
amelioration method to solve FLP programs which includes stochastic 
parameters in the objective function. 

Different parts of this research are prepared in five sections. In 
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Section 2, we present the essential concepts and results on stochastic 
programming that will be useful in our methodology. In Section 3, we 
define two new concepts:   feasible and   efficient solutions, and 
then based on the theoretical discussions, we provide a computational 
method for obtaining a solution for the mentioned problems. In 
Section 4, an application of the method is described in FLP problems. 
We finally present some important results in the last section. 

Stochastic Programming 

The major part of this section regarding the fundamental and 
necessary concepts and definitions of probability theory is taken from 
Casella and Berger (2001) and Grimmett and Stirzaker (2001). Hence, 
to bring the preliminaries, we omit the details of the backgrounds 
here. In particular, the Stochastic Linear Programming (SLP) 
problems are concentrated. Furthermore, we introduce a new decision 
making model according to E-model, which is one of the most 
efficient models in the sense of the SLP programs. 

Assume the following Stochastic Linear Programming (SLP) 
program: 

 0 0 1

( )

. . : , , ( )

s

n

Max z x c x

s t x S x Ax x



    R
 

where  1 nx x x , ..., is a 1 n vector which is including the 

decision variables, matrix ij m n
A a


    and vector  1 2

T
mb b b b , , ...,

are respectively a matrix and a vector including the crisp real 

numbers. Also,  1 2, , ...,s s s s
nc c c c is a row vector of random interval 

data. 
Since the objective function coefficients of Problem (1) are 

random, so this problem is not well-defined. As a result, we cannot 
optimize it similar to deterministic cases. In order to deal with such 
SLP problems, several decision approaches have been appeared in the 
literature. Here, we focus on the Expectation Optimization (EO) 
method and then present an extended version of this model which is 
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famous as the expected value model, and using this approach replaces 
the objective function parameters by its mean value. Now, assume that 

some or all of the coefficients of  1 2, , ...,s s s s
nc c c c in the SLP 

problem are random, hence, the main target of Problem (1) in the 
expectation model is represented as: 

1 1

s

n n
s s
j j j j c

j J

E c x E c x m x
 

 
     

 
 

 

where  
1

s s s
nc c c

m m m , ...,  denotes the mean of random variables 

s
jc and  .E  means the expectation. Hence, Problem (1) will be 

transformed into the following problem:
  

2

sMax E z x E c x

s t x S

   


( )

. . ( )  
where  0nS x Ax b x   : , ,R  and sE c x    indicates the 

mean value of .sc x  

Fuzzy Mathematical Programming 

In this section, consider FMP model as follows: 

 
  0 3

0

s

i i

Max f x c

s t g x a

x

i I




,

. . , , ( )

,

,




 

where  1I m ,..., ,  and  1 2, , ...,
T

nx x x x is a real vector 

including the decision variables, and random vector 

 , , ...,
Ts s s s

nc c c c 1 2 is including the objective coefficients. The row 

vector ia shows the i th row of   ,ijA a  where A is a real m n 

dimensional matrix of technical coefficients. And, functions f and ig  

where i I  possess continuous property up to the second derivatives, 
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that is f and 2
ig C , 1 .i m , ...,  Also “ ” denotes a fuzzy extension 

of “  ”on R  which is used to compare the left and the right side of 
fuzzy constraints (Dubois & Prade, 1980). 

With regards to   0i ig x a i I, , does not make a crisp feasible 

region, so, in order to produce a deterministic feasible area, the idea 
does not provide confidence levels i at which it is desirable that the 

corresponding thi -  fuzzy constraint holds. Therefore, in order to 
obviate those mentioned restrictions, we introduce the following 
model: 

 
  0 4

0

s

i i

Max E f x c

s t g x a

x

i I

 
 




,

. . , , ( )

,



 
where,  , sE f x c 

  shows the mean of  , sf x c . Let sc
m denote 

the mean of ,sc and hence, the objective function can be clearly 

written as: 

     , , , ,s

s s

c
E f x c f x E c f x m        
So, Model (2) can be equivalently transformed to:  

 
  0, (5)

0,

sc

i i

Max f x m

s t g x a i I,

x





,

. . , 

 
In order for a significant selection of the membership function for 

each fuzzy constraint, it refers to, if   0,,i ig x a  thus, this constraint 

is wholly satisfied, if   ,,i i ig x a p so that the parameter ip  is the 

predefined maximum tolerance from zero, which is determined by an 

expert decision maker, therefore, the thi - constraint is certainly 

violated. Note that, for    0 ,, ,i i ig x a p  the membership function 

is monotonically decreasing. Furthermore, when membership 
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functions of the constraints are considered in the linear form, we have: 

 

 
   

 

1 0

1 0 1 2 3 6

0

, , ,

,
, , , , , , , ( )

, ,

i i

i i
i i i i i i

i

i i i

g x a

g x a
A x b g x a p i

p

g x a p



 

    

 

 

where  1,..., .i I m 
  

Now, let us to begin with the concept of feasible solution to the 
fuzzy programming problem with stochastic parameters of Model (3). 

The following definition is prepared for this aim.   

Definition 1. Let    1 0 1, ..., ,
m

m    be a vector, and 

     0 0 1n
i i i iX x x g x a i I m       | , , , , ..., .R

 
Then, the vector x X   is named an   feasible solution of 

Model (3). 
Following proposition enables us to define feasible set of Model 

(3) as an intersection of all   cuts corresponding to fuzzy 
constraints. 

Proposition 1. Let    1 0 1, ..., ,
m

m    , then 
1

,
i

m
i

i

X X 


 where  

   0 0 ,| , ,
i

i n
i i i iX x x g x a     R

 
For  1i I m  , ..., (Namely, iX   is the -cut of the -thi  

constraint). 

Proof.  For    1 0 1, ..., ,
m

m    , let x X  . Therefore, 

   , 0i i ig x a 
 

and from    0 0| , ,
i

i n
i i i iX x x g x a     R , we have 

.
i

ix X i I , Therefore, 
1

.
i

m
i

i

x X 


  Moreover, if 
1

,
i

m
i

i

x X 


  we 

have 
i

ix X i I , , so   0,i i ig x a  i and hence, x X  . 

Therefore, the proof is completed.□ 



78   (IJMS) Vol. 11, No. 1, Winter 2018 

Proposition 2. Let  1 m     ,..., and  1 m     ,..., , where

i i   for all .i  Then  feasibility of x implies the 
feasibility of it. 

Proof. By the use of definition of   cuts and also   feasibility 
of the solution the proof is straightforward. 

For a given  0 1 ,, let a solution nx R be usual   feasible to 

Problem (4) (a solution in which has the same satisfaction degree in 

the mentioned constraints). It means that   0 ,,i i ig x a  or 

ix X  , for all i I  If     0 1 ,, ..., ,
m    then ,x X  which 

implies that the   feasibility of Problem (3) can be understood as a 
special case of the   feasibility. Therefore, we immediately have the 
next result. 

Remark 1. If Problem (3) is feasible, we clearly conclude that X   

is not empty. 
Definition 2. Let   be a fuzzy extension of common relation   

and also a solution  1, ...,
T n

nx x x R be   feasible to Problem 

(3), where    1 0 1, ..., ,
m

m     and let  , sf x c be a stochastic 

objective in the form of maximization. Therefore,  1 nx x x , ..., , 

where n
jx R  is an  efficient solution to Problem (3), if there is 

no x X  so that     ., ,s sE f x c E f x c        

Similarly, an  efficient solution for the form of minimization 
can be defined. 

It is clear that any  efficient solution to the mentioned FMP is 
indeed a   feasible solution to the FMP with some additional 
properties. 

Now, we give the following theorem which is concerned to both 
important conditions (that is, necessary and also sufficient) for an 
efficient solution to Problem (3). 

We will see that this theorem has an important role in the given 
theoretical discussion in our study.  
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Theorem 1. Let    1 0 1, ..., ,
m

m    and also  1
* * *, ..., ,nx x x  

where  0,jx j J = 1,2,...,n * be a   feasible solution to Problem 

(3). Then, * nx R is an  efficient optimal solution to Problem (3), 
where the objective function is assumed in the type of maximization, 

if and only if the decision making vector *x  is an optimal solution to 
the following program: 

 
     p , (7)

0, j

sc

i i i i

j

Max f x m

s t g x a i I 1,...,m ,

x J

   

 

,

. . ,

,

1

 
where ip is the predefined maximum tolerance. 

Proof. Let    1 0 1, ..., ,
m

m    and let  
1j n

x x


* * ,  such that 

0, j J,jx  * be an  efficient solution to Problem (3). Attari and 

Nasseri (2014) by using Definition 1 and Equation (6) concluded that 
*x is feasible to Model (7), because   0i i i ig x a *,  or 

equivalently    1i i i ig x a p * ,  for i I . Also, according to 

Definition 2, there is no x X  such that     s sE f x c E f x c      , , , 

it means that *x  is optimal to Model (7). Conversely, if *x is an 

optimal solution to Model (7), obviously, *x  is an   feasible 

solution to Model (3) and hence, the optimality of *x implies that the 

 efficiency of *x . 
In Theorem 1, we have discussed a method to fuzzy mathematical 

programming problems to obtain an efficient solution. If the 
resulting Problem (7) has only one optimal solution, then we have 
proved that this solution is an  efficient solution to the given 
problem. In the case of which Problem (7) has some multiple optimal 
solutions, in order to achieve a maximum efficient solution, that is an 
 efficient solution with 1 ,, , ...,i m    we perform the 

following two-phase approach. Note that the current suggested 
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approach is different from the classical two-phase method which is 
common for solving linear programming. In fact, in the proposed two-
phase approach, Equation (7) can be solved in the first phase, while in 
the second phase; a solution is obtained which has higher satisfaction 
degrees than the previous solution. Therefore, we obtain a more 
comfortable assignment of the available resources by using this 
approach. Moreover, the achieved solution by this method is also an 
 efficient solution for the mentioned problem. 

Let us call Problem (7) as phase 1 problem. Let  0 0 0
1 , ..., m  

and    * *, ,x E f x c be the optimal solution of phase 1 with 0

degree of efficiency.  

Set 
  0* * ,i i i ig x a   0

i i I , .  

In Phase 2, we solve the following problem 

   
   

1

1 p , (8)

1

0,

s s

m

i
i

c c

i i i i

i i

j

Max

f x m f x m

s t g x a

x





 





 

 




*

*

, , ,

. . ,

,

 
where i I and j J . 

Let  1
** ** **, , ..., mx   be an optimal solution to Problem (8) (Phase 

2). Then, the next important result is at hand. Clearly, this result can 
help us to understand the valuable relation between Problems (3) and 
(8). 

Theorem 2. The optimal solution **x to Problem (8) is a maximum 
 efficient solution to Problem (3). 

Proof. Using Problem (8), Proposition 2 and due to * 0
i i  , it 

results that **x  is an 0  feasible solution to Problem (3) and this 
shows that it is feasible in Model (5). With optimality of *x in Model 
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(5) and moreover,    ** *, ,S Sc c
f x m f x m , we will have optimality 

of **x in Problem (5) and    ** *, ,S Sc c
f x m f x m . Thus, **x is an 

0 efficient solution for Problem (3). Also, due to the optimality 

 ** ** **
1, ,..., mx   and the positivity of the objective function coefficient 

in Problem (8), we have   ** *, 0 ,i i i ig x a i I   . Now, assume 

that x **  is not a maximum 0 efficient solution for Problem (3). 
Thus, there is an 0 efficient solution x ** for Problem (3), so that  

** ,i i i I    
and for some ,k  

**
k k   

where,   *, 0 ,i i i ig x a i I   and also    *, ,S Sc c
f x m f x m  . 

Thus,  1, ,..., mx   feasible to Problem (8) and  

** ** **

1 1, 1, 1

m m m m

i i k i k i
i i i k i i k i

     
     

       
 

The proof is completed now.□ 
Next section is prepared to describe our suggested approach. 

Numerical Discussions    

Now, we are at the place that we would like to explore the solving 
process for the extended model by some illustrative examples. 
Example 1: Assume that the following model is given to solve: 

 
1 2 3 4

1 2 3 4

1 2 3 4

5 3 16

7 4 3 70 9

2 4 9 12 90

0 1 4

s
j i j

j

Max c x

s t x x x x

x x x x

x x x x

x j



  

  

  

 

. . ,

, ( )

,

, , ..., ,







 
where   1 4 1 2 3, , ..., , , , ,s

j ic j i    is random variable which is 

defined on some probability spaces  , ,F P . Table 1 describes the 

value of random variable coefficients in objective functions. 
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Table 1. Value of the Random Variable Coefficients 

 1  2  3  

 1
sc   3 2 5 

 2
sc   3 6 5 

 3
sc   7 8 9 

 4
sc   9 12 15 

P 0.25 0.5 0.25 

The expectation model with fuzzy constraints is formulated as: 

       1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

5 3 16

7 4 3 70 10

2 4 9 12 90

0 1 4

s s s s
i i i ic c c c

j

Max m m m m

s t x x x x

x x x x

x x x x

x j

   
  

  

  

  

 

. . ,

, ( )

,

, , ..., .







 
Based on the concept of the expectation, from the given data from 

Table 1, we have: 

 

 

 

 

1

2

3

4

3

5

8

12

s
i

s
i

s
i

s
i

c

c

c

c

m

m

m

m

















,

,

,

,
 

so, the current program can be re-written as: 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

3 5 8 12

5 3 16

7 4 3 70 11

2 4 9 12 90

0 1 4j

Max x x x x

s t x x x x

x x x x

x x x x

x j

  

  

  

  

 

. . ,

, ( )

,

, , ..., .







 
with the membership functions also defined in Model (6) as 

following: 
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 

 

 

 

1

1 2 3

0

i i

i i i
i i i i i i i

i

i i i

A x b

p b A x
A x b A x b b p i

p

A x b p



  


    

   

, , ,

, , , , , ,

, ,
 

such that the elements of     1 2 3 5 40 30P p p p , , , ,  is 

respectively the predefined maximum tolerance from 1 2 3, , ,ib i 

(Fiacco, 1983). By Theorem 1, we can rewrite Model (11) as follows: 

 
 
 

1 2 3 4

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1 4

3 5 8 12

5 3 16 5 1

7 4 3 70 40 1 12

2 4 9 12 90 30 1

0 1 1 2 3

0
i

Max x x x x

s t x x x x

x x x x

x x x x

i

x x









  

     

     

     

  



. . ,

, ( )

,

, , , ,

, ..., .
 

Some  efficient solutions with satisfaction degrees which 
decision maker's desire can be found in Table 2. 

Table 2. Some Optimal Solutions to Model (11) with Different Satisfactions 

a  b  c d  e f  

a  (0.5,0.5,0.2) (0.5,0.5,0.8) (0.5,0.1,0.5) (0.5,0.9,0.5) (0.5,0.5,0.5) 
Tc x  127.500 111.7500 119.6250 119.6250 119.6250 

1x  0.0 0.0 0.0 0.0 0.0 

2x  13.5000 15.7500 14.6250 14.6250 14.6250 

3x  0.0 0.0 0.0 0.0 0.0 

4x  5.00000 2.75000 3.87500 3.87500 3.87500 

 
If all of the satisfaction degrees are equal, then the   feasibility 

and  efficiency reduce to classic   feasibility and   optimality 
(see Table 1, column f ). 

Let *x  be an  0 5 0 9 0 5. , . , . efficient solution with 119 6250Tc x * .

as an optimal objective value (see Table 1, columne ). In Phase 2, it is 
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necessary to solve a multi-parametric LP program which is shown 
below: 

 
 
 

1 2 3

1 2 3 4

1 2 3 4 1

1 2 3 4 2

1 2 3 4 3

1

2

3

1 4

3 5 8 12 119 6250

5 3 16 5 1

7 4 3 70 40 1 13

2 4 9 12 90 30 1

0 5 1

0 9 1

0 5 1

0

Max

x x x x

s t x x x x

x x x x

x x x x

x x

  











 

   

     

     

     

 

 

 



.

. . ,

, ( )

,

. ,

. ,

. ,

, ..., .

 
By solving the above multi-parametric programs, an optimal 

solution will be achieved as: 

 0 0 14 6250 0 0 3 87500x ** . , . , . , .
 

Also, 119 6250T Tc x c x ** * . . We have  

   1 1 1 3 3 3 0 5** **, , .A x b A x b  
 

and 

 2 2 2 1** ,A x b 
 

Thus, solving the model by the mentioned approach, we can 
achieve a new optimal solution for Problem (9), which not only it has 
the optimal value for the given objective, but also it gives us a higher 

membership value in 2.  

Example 2: A manufacturing company produces three products in three 
processes. The machining time of each product in each process is given 
in Table 3. The maximum available time of the processes per week for 
Process I is approximately 600 minutes, for Process II approximately 
400 minutes, and for Process III approximately 200 minutes. The profit 

of each unit of product A, B, and C is respectively 1
sc , 2

sc  and 3
sc , 

which are random variables with the expectation 30, 12, and 11. 
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Table 3. The Machining Time 

Process Product A Product B Product C 

I 9 3 5 

II 5 4 7 

III 3 2 4 

To maximize profits, the number of products produced per week is 
obtained. Suppose that the amounts of products A, B. and C will be 

respectively produced by 1x , 2x  and 3x variables. Then, by using the 

above values, the mentioned program is formulated as: 

 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

30 12 11

. . 9 3 5 600,

5 4 7 400, 14

3 2 4 200,

, , 0.

Max x x x

s t x x x

x x x

x x x

x x x

 

 

 

 








 
Suppose that predefined maximum tolerance from 1 2 3ib ,i , ,  are 

determined by manager of the company as 1 260 40p , p   , and 

3 20p  , respectively. Now, by using the membership function which 

is defined in Model (6), we can rewrite Problem (14) as follows: 

 
   
 

1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

1 2 3

30 12 11

9 3 5 600 60 1

5 4 7 400 40 1 15

3 2 4 200 20 1

0 1 1 2 3

0
i

Max x x x

s.t . x x x ,

x x x ,

x x x ,

, i , , ,

x , x , x .








 

    

    

    

  


 
So, for 0 5 1 2 3i . , i , ,   , this problem can be solved by using 

software of LINGO 14.0 and an optimal solution is obtained as 
follows: 

 70 0 0*x , ,
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with the optimal objective value 

2100T *c x   
Now, in order to obtain a maximum  efficient solution for the 

above mentioned problem, it is necessary to solve the following multi-
parametric LP problem, 

 
   
 

1 2 3

1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

1

2

3

30 12 11 1200

9 3 5 600 60 1

5 4 7 400 40 1 16

3 2 4 200 20 1

0 5 1

0 5 1

0 5 1

0 1 2 3j

Max

x x x ,

s .t . x x x ,

x x x ,

x x x ,

. ,

. ,

. ,

x , j , , .

  










 
  

    

    

    

 
 
 
 

 
By solving the above parametric linear model, we achieve the 

optimal solution below: 

 70 0 0**x , ,
 

Also, 2100T * T **c x c x  . While we have: 

     1 1 1 2 2 2 3 3 30 5 1 0 5A x b A x b A x b    ** ** **, . , , , , . .
 

The above results conclude that the best value for the satisfaction 
degree of the obtained optimal solution is achieved. We see that in the 
second resource, we may need to reduce the tolerance to 400. 

Conclusions 

In this research, we first extended the common FLP to the stochastic 
environment. In particular, we introduced the novel approach to solve 
linear programming models with stochastic parameters and flexible 
constraints. Also, we presented the concepts of   feasibility and  
efficiency, where   is a vector of satisfaction degrees which are 
determined by the decision maker. These concepts help us to obtain 
more flexible solutions to FMP problems. In addition, in the case of 
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linear problems, we have proved that the desired solution can be 
achieved by solving a corresponding multi-parametric LP. 
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