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Abstract 

In this study, we discuss a location-inventory-pricing model considering the capacity constraints of the 

warehouses, disruption, and multiple perishable products. We extend a model that assumes that 

warehouses may face disruption, failed warehouses cannot cover any service, and their customers are 

assigned to other warehouses. To decrease the risk of disruption, we examine the efficiency of markup 

pricing strategy and support services. The objective function of this MINLP is to maximize the total 

profit of warehouses. To solve this model, Genetic Algorithm (GA) and Grasshopper Optimization 

Algorithm (GOA) are used. To evaluate the recommended model, several sensitivity analyses are 

proposed. Finally, the results of numerical experiments implicate the high-performance of GOA in 

dealing with problems and achieving better results. According to the results, backup services and 

markup pricing strategies are very effective in reducing the damage caused by the disruption. 

 
Keywords: Location-inventory, Perishability, Markup pricing, Disruption, Meta-heuristic algorithms. 

 

Introduction 

 
One of the significant issues in the supply chain is network design. Therefore, in creating a 

supply chain distribution network, the essential components of the supply chain such as 

transportation, equipment, inventory, and pricing should be examined together to promote the 

competitive strategy of a system and maximize the benefit of the supply chain (Li & Hai, 

2019). Moreover, Location-inventory problems have attracted the attention of researchers 

over the past decade. One of the significant issues leading to an increase in the profit of the 

supply chain in a competitive situation is to design an effective supply chain network (Fahimi 

et al., 2018; Nemati et al., 2017). Location and inventory control decisions are in the category 

of strategic and operational/tactical decisions, respectively (Gzara et al., 2014). Traditionally, 

the storage and the distribution of products have been controlled independently. In the current 

situation, joint location-inventory problems are more developed.  

Most of the research on location-inventory problem presumes that facilities are always 

ready to provide service for customers. Nonetheless, in recent years impressive consideration 

has been paid to location-inventory problems under disruption. Disruptions may happen at 

any time, for instance, due to natural disasters, fires, labor strikes, terrorist attacks, equipment 

failures, economic tension, etc. Generally, it can happen in any situation that in which there is 

a lack of access to facilities. Consequently, the consideration of the risk of disturbance leads 

to a more useful solution and makes the model more realistic (Farahani et al., 2017). 

Basic supply chain models usually suppose that the life of goods is unlimited, while many 

products (e.g., meat, human blood, flowers, etc.) are perishable. Approximately 10% of the 
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perishable products are lost before they are bought by consumers. Therefore, the cost-induced 

deterioration should not be overlooked in real cases. In this study, the lost costs of perishable 

goods during transmission will be examined (Dai et al., 2018).  It is necessary to mention that 

while few studies considered capacity constraints on their studies, most of real cases deal with 

capacity constraints. 

 Most of the studies on location-inventory problems have minimized the cost of the supply 

chain; only a few studies have investigated profit-maximization models with demand choice 

flexibility. In these kinds of models, the prices only affect consumers’ decisions to get service 

or not, and the quantity of demand is independent of the pricing strategy (Ahmadi-Javid & 

Hoseinpour, 2015a). In recent years, the extension of innovative pricing policies has been 

observed in various industries. Indeed, most of the companies have started using dynamic 

pricing to improve their systems (Kaya & Urek, 2016). 

In this article, a location-inventory-pricing problem for multiple independent perishable 

products is proposed that investigates the markup and probability of a disruption in 

warehouses. This network consists of a plant, potential warehouses (in which inventory 

management decisions are included only), and retailers. When disruption occurs, the failed 

warehouses cannot provide any service, and their consumers are assigned to other 

warehouses. Therefore, warehouses attempt to reduce the impact of disruption. To fill these 

gaps, warehouses implement pricing strategies. Markup pricing is the strategy applied in this 

paper. Through markup pricing in each level of retailer assignment to a warehouse, the price 

will be increased to reduce the mentioned disruption. Our model's aim is to maximize the 

profit of warehouses. Based on the aforementioned information, the contributions of this 

study that distinguish it from other relevant research include: 

 Analyzing a three-echelon location-inventory-pricing supply chain problem for 

perishable products 

 Considering disruption and markup simultaneously 

 Maximizing the profit of the warehouses 

 Considering various perishable goods with various unit holding and ordering costs 

 Considering warehouses with limited capacities 

 Using a new metaheuristic algorithm called Grasshopper Optimization Algorithm 

(GOA) to solve LIP with large size. 

 

Literature Review 

 

In this part, the recent studies on joint location -inventory problem under facility disruption 

and price decision are reviewed. Tavakkoli-Moghaddam et al. (2018) improved the MINLP 

model for a two-echelon closed-loop supply. The model tried to minimize the supply chain 

costs for spare parts. They used particle swarm optimization (PSO) to solve the large instance 

in a reasonable time. Vahdani et al. (2017) used a genetic algorithm (GA) and simulated 

annealing (SA) to minimize total supply chain costs on a location-inventory problem that 

considered inventory shortages and correlated demand of the retailers. Orand et al. (2015) 

extended the inflationary inventory model under non-deterministic situations. Their model 

attempted to minimize the total discount cost of the inventory system. They used the classic 

numerical approach and Simpson approximation and particle swarm optimization (PSO) to 

solve the problem. Puga and Tancrez (2017) investigated a heuristic algorithm to solve large 

size LIP with non-deterministic demands. In their suggested model, three categories of 

decision-making were combined simultaneously that involved the number of open facilities, 

inventory management, and the location and allocation of the equipment and retailers. The 

purpose of solving this problem was to minimize the costs of the supply chain. Dai et al. 
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(2018) extended a MINLP model to formulate a location-inventory problem into a supply 

chain network with the consideration of perishable goods and fuzzy capacity constraints. 

Their proposed model was solved using a hybrid genetic algorithm (HGA) and hybrid 

harmony search (HHS) to minimize the costs. Hiassat et al. (2017) extended a genetic 

algorithm method to solve an LIP with perishable goods. In addition, they created a novel 

chromosome to design the individual structure of problem. Hamdan and Diabat (2019) 

presented a stochastic coding LIP that entailed the four levels of the RBC supply chain. They 

used CPLEX to solve the suggested model for minimizing the costs, the transfer time, and the 

number of outdated goods. Rafie-Majd et al. (2018) studied a joined location-allocation, 

routing, and inventory problem with multiple perishable goods under non-deterministic 

situations. They used a Lagrangian relaxation algorithm to solve this NP-HARD model. 

Guerrero et al. (2015) proposed the Lagrangian relaxation algorithm to solve the Location-

Inventory-Routing Problem to optimize a supply chain design. 

Ahmadi-Javid and Hoseinpour (2015a) offered a location-inventory-pricing model with the 

consideration of the capacity limitation. Each DC had a restricted warehouse place that 

affected consumer assignment to open DCs. They proposed a Lagrangian relaxation algorithm 

to obtain near-optimal solutions to this issue. Ghasemy Yaghin et al. (2017) proposed a fuzzy 

non-linear model that included pricing and inventory decisions to maximize return on 

inventory investment (ROII). Ahmadzadeh and Vahdani (2017) introduced a nonlinear 

programming model for a joint location-inventory-pricing issue in a three-echelon closed loop 

supply chain. In addition, they considered periodic review policy (R, T) for inventory 

management. They used three metaheuristic algorithms to solve it, including genetic 

algorithm (GA), imperialist competitive algorithm (ICA), and firefly algorithm (FA). Li and 

Hai (2019) investigated an inventory-pricing problem with the capacity constraint of the 

facility, and proposed a Lagrangian relaxation algorithm to solve the nonlinear integer 

programming model. Ahmadi-Javid and Hoseinpour (2015b) offered a location-inventory-

pricing model by assuming continuous review inventory policy, multi-goods supply chain, 

price-sensitive demands, and capacity constraint. They proposed a Lagrangian relaxation 

approach to solve the large-size instances. Kaya and Urek (2016) introduced a location-

inventory-pricing model in a closed loop supply chain to obtain optimal locations of the 

facilities, inventory quantities, and price of goods to maximize total profit. They integrated a 

group of used goods with the distribution of the new goods. Chen and Hu (2012) presented a 

pricing and inventory model of a single product with price regulation costs and deterministic 

demands. They determined an ordering volume and a price simultaneously at the beginning of 

each period. Furthermore, they developed polynomial-time algorithms to maximize profit. 

Chen and Zhou et al. (2011) investigated an inventory-pricing model that took into account 

price adjustments and multi-period to gain optimal supply chain profit. Etebari and Dabiri 

(2016) addressed a heuristic algorithm to solve a quadratic mixed-integer programming model 

and considered multi-period Inventory Routing and dynamic pricing strategy in their model. 

Ahmadi-Javid et al. (2018) offered a mixed-integer linear programming model for a location-

routing problem by the consideration of price-sensitive demands. They used the branch-and-

price algorithm to solve MINLP model for large-size instances. Smith and Agrawal (2017) 

simultaneously optimized the prices and inventory allocation across multiple retail locations 

in the presence of inventory dependent demand. Moreover, they analyzed how inventory 

dependence of demand affected the optimal pricing and distribution of inventory. 

 Dehghani et al. (2018) analyzed an integrated location-inventory problem in which 

facilities provisionally were not available. They also presented a method that included the 

Markov process and mathematical programming for designing the supply chain’s channels. 

They developed a simulated annealing algorithm to solve this issue. Zhang et al. (2016) 
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investigated a reliable location- inventory problem to analyze supply chain with 

heterogeneous disruption probabilities. They applied heuristics based on Lagrangian 

relaxation to minimize expected cost. Zhang et al. (2015) addressed a reliable capacitated 

location–routing problem in which depots were randomly faced with disruption. They also 

extended the simulated annealing algorithm to obtain optimum depot location, distribution 

routing, and backup systems. Chen and Li et al. (2011) investigated LRP under department 

disruption risk. They supposed that when a department breaks, its customers are diverted to 

other open departments to reduce the lost sale cost. They developed a Lagrangian relaxation 

solution to minimize the total cost. Farahani et al. (2017) introduced a multiple goods 

inventory-location problem under disruption in which facilities might fail partially and 

examined substitutable goods to decrease the damage of disruption. They proposed a hybrid 

algorithm based on Tabu Search (TS) and Variable Neighborhood Search (VNS). Asl-Najafi 

et al. (2015) addressed LRP for a multiproduct closed-loop supply chain in which facility 

disruption was taken into account. They developed a hybrid meta-heuristic algorithm 

consisting of Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated 

Sorting Genetic Algorithm-II (NSGA-II). 

According to Table 1, there are few papers that integrate the location-inventory problem 

with the price decisions. In addition, disruption in the system influences many elements such 

as changing the price of goods. This is a critical issue in real problems that have not been 

addressed before. Thus, it is a good idea to design a perishable product inventory location 

supply chain considering assumptions like disruption. Based on the mentioned gaps in 

location-inventory supply chain, assuming multi perishable goods and price decisions under 

the risk of disruptions will be a necessary step in the literature. 
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Problem Statement and Formulation 

 

Problem Description 

 

This model examines a joint location-inventory supply chain and price decision for multiple 

independent perishable goods, which investigates markup and the probability of a disruption 

in the warehouse. This network consists of three echelons, namely a plant, warehouses, and 

retailers. The main goal of this model is to maximize the profit of warehouses. To this end, it 

considers the total revenue of the warehouses, the purchasing costs of products, the lost sale 

costs (when disruptions occur), warehouse holding and ordering costs, fixed costs, 

transportation costs, and loss costs of perishable products. The main decisions are described 

as follow: 

 The optimal number of warehouses 

 The locations of warehouses 

 The optimal allocation of retailers to open warehouses 

 Order-size decisions at open warehouses 

 The retail price decisions of products offered at each warehouse 

Assumptions: 

 Inventory control decisions are considered only at warehouses, and the multi-product 

EOQ (Economic Order Quantity) strategy is assumed in this problem. 

 The holding and ordering costs are different for each kind of perishable products.   

 Products deteriorate only during the transition between warehouses and retailers. If 

transportation time surpasses the crucial time, the perishable products will be thrown 

away. 

 The deterioration rate of perishable products is deterministic and known for each 

product. 

 The lead time and stock shortages for warehouses are not considered in this model. 

 Each retailer is allocated to only one warehouse at each assignment level.  

 Fixed costs for opening warehouses are pre-designated. 

 Transportation costs depend on the distance and number of perishable products. 

 Warehouses are controlled with the capacity constraint. 

 Each opened warehouse breaks independently with probability q. If a warehouse fails, it 

cannot provide any service and its original customers will be diverted to other 

warehouses. In addition, each retailer is allowed to get service from a sequence of  

  | | warehouses. 

 According to the previous assumptions, two scenarios are considered. Under the normal 

scenario (where no warehouses fail), a retailer is assigned to its level-1 warehouse. 

Under the second scenario, the probability for retailer   to get service from its level-r 

facility is     (   ). If all R assigned warehouses for each retailer fail, the 

probability will be    (Chen and Li et al., 2011). Further, when a disruption occurs, 

warehouses attempt to reduce the impact of that disruption. To fulfill this purpose, 

warehouses implement pricing strategies. Markup pricing is the strategy applied in this 

paper. Through markup pricing in each level of retailer assignment to a warehouse, the 

price will be increased to reduce the mentioned disruption.  
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Plant Potential Warehouses Retailers

 
Figure 1. An Overview of Discussed Problem 

 

Notation 

 

 
Parameter Definition 

  index of perishable product,           
j index of potential warehouses,           
i index of retailers,           

R 
The levels in the succession of the warehouse that a retailer should visit to gain the 

demanded product (index r) 

q disruption probabilities for a warehouse 

    the annual demand of retailer   for perishable product   

   annual fixed cost of warehouse   

   loss cost for per unit of perishable product k 

    distance between plant and warehouse j 

    distance between warehouse   and retailer   

   unit cost of transportation product k  per km 

    ordering cost at warehouse j for per unit perishable product k 

    holding cost at warehouse   for per unit perishable product   

   the critical time of perishable product k 

   deterioration rate of perishable product   

   annual capacity constraint for warehouse   

   the volume of per perishable product   

  speed of vehicle 

  lost sale cost for per unit of demand 

    the markup percentage of product determined by warehouse   

    the wholesale price of product   at warehouse   

     the retail price of product    at warehouse    in level   

Decision variables  

     1, if retailer   is allocated to warehouse j at level   ; 0, otherwise 

   1, if warehouse j is established; 0, otherwise 

    
ordering quantity of perishable product k at each warehouse j 

 

 

Formulation of Model  

 

According to the assumption that the wholesale price is predetermined, determining the retail 

price at each warehouse is equivalent to determining its proper markup. Retail price per unit 

of product   at warehouse    in level   equals: 
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 1 jrk jr jkp b C  (1) 

Accordingly, the probability for retailer   to receive service from its level-r warehouse 

is     (   ). The annual demand for product k in warehouse j is calculated as follows: 

 1

1
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If all R assigned warehouses for each retailer fail, the probability will be    and lost sale 

cost is not acceptable for warehouses: 

 
R

ik

i I k K

LS π q D  (3) 

According to the assumption that the wholesale price is predetermined, various perishable 

goods have different holding and ordering costs. So, the optimum ordering size(    ) is 

represented as: 
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Warehouses’ total holding cost is: 
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And, warehouses’ total ordering cost is formulated as: 
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Fixed costs of warehouses are shown by: 
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computed by: 
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Therefore, the loss costs of perishable products are: 
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The purchasing costs of products for warehouses: 
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The total revenue of the warehouses is formulated as: 
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The objective (12) maximizes the warehouses' profit (i.e., total revenue minus total cost, 

which includes the purchasing costs, lost sale cost, total holding and ordering cost, fixed 

costs, transportation cost, and loss costs of perishable products). Constraint (13) ensures that 

retailer   is only allocated to a warehouse at each allocation level. Constraint (14) guarantees 

that a retailer can only recourse to an established warehouse and retailer does not refer to a 

visited warehouse at each level. Constraint (15) states that if the time of delivering perishable 

products from a warehouse to retailers exceeds the critical time, it will lead to discarding 

them. Constraint (16) requires that the capacity of each warehouse should be respected. 

Constraint (17) states that according to warehouse capacity constraint, the ordering quantity of 

perishable product may be lower than the optimal ordering quantity. Constraint (18) controls 

perishable products to balance on warehouses. Constraint (19) defines variables. 

 

Solution Approach 

 

The presented LIP model considers two kinds of problems: inventory control and location-

allocation problem with capacity constraint. The capacitated department location-allocation 

problem is an expansion of the incapacitated location problem. In addition, there is not an 

effective approach that ensures an optimal solution (Punyim et al., 2018). Amiri-Aref et al. 

(2018) developed an estimated solution method, according to Sample Average Approximation 

(SAA) method, to solve the location inventory problem that has equal NP-hardness trait like a 

simple location problem. Consequently, our offered MINLP model is an NP-Hard problem. 

On the other hand, due to the complexity of the proposed nonlinear model, such as Kuhnle 

and Lanza (2019), it is difficult to linearize the model. In addition, linearizing the model may 

make the problem more complicated. In this regard, Taleizadeh et al. (2011) and Farahani et 

al. (2015) proved that meta-heuristic algorithms have high efficiency to deal with nonlinear 

problems. Therefore, the Grasshopper Optimization Algorithm (GOA) is used to solve this 

model. 

 

Genetic Algorithm 

 

The genetic algorithm is an evolutionary algorithm. Studies in the literature have shown the 

high performance of GA in solving combinatorial optimization problems (Hiassat et al., 

2017). The steps of Genetic algorithm based on Vahdani et al. (2017) are as follows. 
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1. Initial Population 

 

The first step of the GA is the creation of solutions as chromosomes. This means generating 

the initial population for all decision variables (     ,   ,   ). The initialization process aims 

to generate the initial solutions for each decision variable randomly (for example, the optimal 

order quantity in the range [qmin, qmax] is generated in random order). Generating random 

chromosomes may cause some restrictions and unfeasible solutions. To face these conditions, 

a penalty for the objective function is defined. Figure 2 shows a sample of the generated 

chromosome for     when     and    . 

 
Figure 2.  Initial Chromosome for    . 

 

2. Crossover Operator 

 

The uniform crossover operator is implemented in this study to create a new generation for 

each iteration of the algorithm. In this step, two parent chromosomes are considered and using 

the roulette wheel, two random numbers in the range of [1, length of the first chromosome] 

and [1, length of the second chromosome] are selected. Then the selected columns are 

replaced with each other. After that, a random number (       ) is generated to explore the 

solution space. Based on Eq. 20 -21, a new offspring is obtained for transmission to the next 

generation. Figure 3 shows a sample of crossover operator when        

 1 1 1 2    Offspring α Parent  α Parent   (20) 

 2 2 1 1    Offspring α Parent  α Parent   (21) 

 
Figure 3. Crossover Operator 

. 

Figure 4. Swap Operator 
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3. Mutation Operator 

 

In this step, the swap operator is utilized. To this end, a chromosome is randomly chosen from 

the population, and then the positions of the two randomly chosen genes are switched with 

each other. Figure 4 demonstrates a sample of mutation operator. 

 

Grasshopper Optimization Algorithm 

 

Grasshopper Optimization Algorithm (GOA) is a metaheuristic algorithm inspired by the 

swarming conduct of grasshoppers that is performed to find the optimum solution of models. 

Further, GOA analyzes the repulsion and attraction powers between the grasshoppers. Saremi 

et al. (2017) introduced the GOA algorithm with mathematically models that relate to the 

Swarm Intelligence methods. They proved the ability of GOA to solve real problems with 

unknown search spaces. Moreover, the results of other research in the literature explain the 

power of this algorithm in enhancing the quality of creating population, moving between 

exploration and exploitation, the top cover of search space, and the high-speed of convergence 

curve during repeat path (Saremi et al., 2020). The low number of control parameters, the 

flexible and exceptional exploratory search model, and a gradient-free mechanism are the 

basic advantages of this algorithm. For problems with constraint, Neve et al. (2017) used a 

penalty function to punish the grasshoppers that violate any of the limitations. Ahanch et al. 

(2017) applied GOA to solve the reconfiguration problem of a distribution system for 

minimizing active power loss. 

The mathematical formulations suggested for this algorithm are given as follows (Saremi 

et al., 2017). 

The flying route of a grasshopper is influenced by several elements, namely social 

interaction(  )  gravity(  ), and wind advection(   ). The position of the      grasshopper 

in the      iteration (  ( )) is indicated as given in Eq. 22. 

       1 1,2, ,     i i i iX t G t S t A t   t  tMax  (22) 

GOA simulates social interaction (  ) to solve problems, which is defined as follows: 

 
1,
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i ij ij

j j i

S s d d  (23) 

 ij i jd x x  (24) 

where     is Euclidean distance between i-th and j-th grasshoppers. And  ̂   
     

   
 is a unit 

vector from i-th to  j-th grasshoppers. The power of social force is shown by  , which defines 

the movement direction of a grasshopper in the swarm and is determined as follows: 

 


 
r

rls r fe e  (25) 

where   and   indicate the intensity of attraction and the attractive length measure, 

respectively. When grasshoppers are interacting, the formulated model of search is defined as 

follows in Eq. 26. 

        
1,

ˆ1
2 

  
    

  

nPop

j id d d

i i j d

j j i ij

x xub lb
X t c c  s x t x t T t

d
 (26) 

where     denotes the upper bound of      dimension,     indicates the lower bound of 

       dimension,  ̂  is the best solution that has been obtained so far, and   is a subtractive 

ratio to decrease the comfort zone, refusal zone, and attraction zone. 

In Eq. 26, the internal c contributes to the decrease in the degree of repulsion/attraction 

forces between grasshoppers, while the external c reduces the search coverage around the 
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target. In the GOA, grasshoppers are tracking the target and if a better solution is found, the 

best solution and   are updated using Eq. 27. 


  max min 

max

c c
c c t

tMax
 (27) 

where      indicates the maximum number of iteration,   shows the current iteration,      = 

1, and       = 0.00001. The pseudo-code of GOA algorithm is shown in Figure 5. Generally, 

the steps of the grasshopper algorithm are as follows. 

 Initial population: The first step of the GOA is to create a set of random initial solutions 

as grasshoppers. This means generating the initial population for all decision variables 

(    ,       ) randomly. In addition, a penalty function is used to punish the grasshoppers that 

violate any of the limitations.   

Evaluation of grasshoppers group: In this step, the fitness for each grasshopper is 

calculated and determined by the best search agent (T). 

Updating the position of grasshoppers: In each iteration, first, the parameter c is updated 

using Eq. 27. Then the distances between grasshoppers are normalized in the range [1, 4]. 

Finally, the position of each search agent is updated by Eq.26. Moreover, the best search 

agent (T) is defined. 

Updating the position of grasshoppers continues until the maximum iteration is reached; it 

is then stopped. 
 

                       (            ) 

                                                      

                                            

                         

      (                           )  

                                
                                 
                                                                                
                          

                                                               
                         

                                                                      

                     
                                                   

                  

           

           

Figure 5. Pseudo Codes of Grasshopper Optimization Algorithm 

 

In addition, the numerical results of the GOA, GA, and GAMES are compared in the next 

section to justify the performance of this offered algorithm. 

 

Numerical Results 

 

In this part, information about the numerical instances and the parameters of GA and GOA 

are determined. Then, instances with different dimensions and parameters are solved using 

GAMS, GA, and GOA. Finally, the impact of changing the major parameters of the model is 

discussed in the sensitivity analysis. 



498   Asghari et al. 

 

Parameters tuning 

 

The outcomes of metaheuristic algorithms are deeply sensitive to the parameters of each 

algorithm. To attain better solutions, the parameters of the algorithms need calibrations. We 

use the Taguchi method for tuning the parameters. The Taguchi method is an effective 

parameter tuning method. To tune the parameters of GA, we consider four parameters, 

including Mutation Rate, Max-Iteration, Population, and Crossover Rate. For the GOA 

algorithm, these parameters are Max-Iteration, Population, Cmax, and Cmin. The Taguchi 

design selects the best value of the objective function. Minitab software is used to implement 

the numerical experiments. Table 2 and Figure 6 - 7 present the experimental results of 

parameters for GA and GOA. 
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Figure 6. S/N Ratio Plot for GA Parameters 
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Figure 7. S/N Ratio Plot for GOA Parameters 
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Table 2. Tuned Parameters for GA and GOA 

Algorithm 

Parameters 

Mutation 

Rate 

Crossover 

Rate 

Max-

Iteration 
Population Cmax Cmin 

GA 0.3 0.7 50 75 - - 

GOA - - 150 25 1 0.001 

 

Comparative Study 

 

To illustrate the performance of the introduced algorithm, several different experiments and 

the Genetic Algorithm (GA) were used. The proposed mathematical model was coded in 

GAMS software. Besides, all metaheuristic algorithms were coded in MATLAB R2015b. 

Two kinds of test problems were considered, which consisted of small size and large size 

problems. Each test problem was illustrated by four figures, indicating the number of 

products (K), number of potential warehouses (J), number of retailers (I), and number of 

levels(R), respectively. The data used for analyzing the model and algorithms' performances 

were determined based on Dai et al. (2018). Moreover, Due to the scarcity of benchmark 

instances in the literature, expert opinions were used to define the limited area of all 

parameters (see Table 3). Then all test problems were generated randomly by MATLAB 

software. In addition, GAMS was used to solve small problems to ensure model 

performance. The results of the experiments are displayed in Table 4. Moreover, Eq. (28) is 

utilized to calculate the gap. 

100


 
optimal solution best found solution

Gap  
optimal solution

 (28) 

In Table 4, the gap between the objective function of each metaheuristic algorithm and 

exact method for small size instances are presented. Moreover, the optimality gap for the 

large-sized instances represents the gap between the objective function of GOA and GA. The 

accomplished results of the presented algorithm for distinctive tests illustrate that GOA has an 

effective execution versus GA in terms of the objective function, but GA has the highest 

performance in computation time. Figure 9 displays the distinction between the objective 

work esteem of GA, GOA, and GAMS. Figure 8 shows the difference between the 

computational time of GA and GOA. 

 
Table 3. Source of Randomly Generated Parameters 

Parameter Value Parameter Value 

    (     )      (       ) 

      (    )      (     ) 

     (        )      (       ) 

     (   )      (     ) 

      (      )     (   ) 

      (      )     (      ) 

     (   )       (   ) 

      (     )       (       ) 

      (    )   
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Table 4. Obtained Results of GAMS, GA and GOA Algorithms 
Problem 

instance 

Dimension 

        

GAMS GA GOA 

OFV OFV Time(s) Gap OFV Time(s) Gap 

1 2 / 2 / 2 / 2 1813.496 1792.77 11.46 1.14% 1802.73 36.79 0.5% 

2 2 / 2 / 3 / 3 11859.879 11395.3 11.96 3.91% 11558.47 36.95 2.54% 

3 2 / 2 / 3 / 4 19103.957 17803.75 13.61 6.8% 18555.02 37.76 2.87% 

4 3 / 1 / 4 / 5 24286.807 22491.65 15.07 7.39% 23236.63 40.23 4.32% 

5 2 / 2 / 4 / 6 36574.965 34074.96 15.61 6.83% 35412.56 40.68 3.17% 

6 2 / 3 / 4 / 6 25814.36 23698.82 18.68 8.19% 24118.54 42.7 6.56% 

7 2 / 3 / 7 / 7 18173.446 16488.78 23.97 9.26% 17400.11 47.64 4.25% 

8 3 / 2 / 8 / 9 36693.951 33408.91 24.6 8.95% 34871.18 48.25 4.96% 

9 3 / 2 / 9 / 12 - 50770.92 32.27 - 57331.64 55.32 - 

10 3 / 3 / 9 / 12 - 34548.04 39.92 - 40052.93 62.32 - 

11 4 / 3 / 11 / 13 - 41465.5 53.42 - 49999.31 75.13 - 

12 4 / 3 / 13 / 20 - 60294.08 76.8 - 69640.34 98.34 - 

13 4 / 3 / 20 / 20 - 66355.06 108.12 - 77340.64 127.72 - 

14 5 / 3 / 25 / 23 - 270335.07 158.99 - 322647.88 176.19 - 

15 5 / 3 / 30 / 35 - 578056.41 254.28 - 680670.34 265.98 - 

16 5 / 4 / 32 / 32 - 671004.61 320.48 - 812140.75 462.24 - 

17 6 / 4 / 35 / 38 - 674711.94 478.7 - 814595.15 618.13 - 

18 6 / 4 / 40 / 40 - 1047494.11 598.87 - 1331497.06 640.89 - 

19 6 / 4 / 42 / 44 - 909824.06 642.47 - 1153358.49 751.51 - 

20 7 / 5 / 45/ 50 - 1263647.13 1008.82 - 1668847.51 1282.95 - 

 
Figure 8. Comparison of GOA and GA in Terms of Computational Time 

 
Figure 9. Comparison of GOA, GA and GAMS in Terms of the Objective Function 
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Sensitivity Analysis 

 

In this section, sensitivity analysis was carried out to examine the influences of parameters on 

the objective function. Several sensitivity analyses were conducted based on the different 

parameter values to validate the proposed model for medium-size problems. The distribution 

functions of randomly generated test problems are summarized in Table 3. In addition, the 

GAMS software was used to conduct the sensitivity analysis.  

One of important investigations was to analyze the influence of R-level sequence of 

warehouses on the profit of warehouses. To do so, we created a problem according to 

parameters in Table 3. This instance was to run with various amounts of q and R. The results 

of Figure 10 illustrate that the profit decreases with the increase in q, due to the extra lost sale 

cost undertaken by warehouses. Consequently, the profit when       is significantly higher 

than those with      , indicating the the important advantage of rendering backup services.  

 
Figure 10. The Effect of q & R on the Profit 

 

Figure 11 displays that the optimized number of open warehouses doesn't change with 

increasing q if R is small. It also shows that if R is large, the optimum number of open 

warehouses increases with growing q. This demonstrates that in a large failure probability, 

extra warehouses can afford good performance for quality services against disturbances. 

Consequently, when a retailer is re-allocated to the backup warehouse, the cost of an 

additional warehouse can be better than additional infrastructure investment, hence making 

extra warehouse is favored. 

  
Figure 11. The Effect of q on the Number of Open Warehouses 
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Figure 12 shows that increasing the holding cost usually decreases the value of objective 

function. Figure 13 shows the relationship between the amount of profit and annual fixed cost 

of the warehouse in which increasing the fixed cost leads to the reduction of profits. 

 
Figure 12. The Effect of Changing the Holding Cost on the Profit 

 

 
Figure 13. The Effect of Changing the Annual Fixed Cost of the Warehouse on Profit 

 
One of the other important investigations is analyzing the impact of markup percentage 

(wholesale price) on the objective function. Figure 14 illustrates the impacts of changing 

markup for different levels (R>1) on the objective function, where a normal condition is 

compared to a condition with 30% disruption probability. It is obvious that retailers’ demand 

is provided immediately on the first level when q=0. Moreover, changing b in R>1 has no 

influence on the amount of profit. It is also clear that with increasing the probability of failure 

(q), profit is sharply reduced. The best strategy to deal with probability disruption is 

increasing markup, which is obtained from Figure 14. Results show that implementing this 

strategy leads to offsetting the loss of profit and supporting other levels, simultaneously. 

Finally, an efficient supply chain that is resilience to disruptions is obtained.  

With the increase in the deterioration rate (   ) and, consequently, the loss of more 

products, the loss costs of perishable products increases, which leads to a reduction in total 

profits. As shown in Figures 15 and 16, with increasing the deterioration rate, the loss costs of 

perishable products decreases and the total profit of warehouses increases. 
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Figure 14. The Effect of Changing the Markup Percentage on profit 

  
Figure 15. The Impact of Deterioration Rate on Profit 

 
Figure 16. The Impact of Deterioration Rate on LC 

 

Conclusion 

 

This study proposed a three-echelon location-inventory supply chain problem with pricing 

decision for multiple independent perishable products, which investigated markup and the 
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probability of a disruption in the warehouse. To analyze the problem, a mixed integer non-

linear programming (MINLP) model was presented which aimed to maximize the 

warehouses' profit.   

 Our model focused on several decisions, including inventory control decisions, multi-

echelon location-allocation problem, and pricing decision. Finally, it determined the number 

and locations of warehouses, the assignment of retailers to warehouses, the optimal order 

quantity in any established warehouse, and the retail price of each product at each warehouse 

and each level. The model was solved by two metaheuristic algorithms, including a Genetic 

Algorithm (GA) and Grasshopper Optimization Algorithm (GOA). To compare the results of 

algorithms, some test problems were designed in different sizes. Numerical results indicated 

that GOA approach has a better performance in terms of objective function, but the GA was 

able to solve the problem in a shorter span of time. There are some noticeable directions for 

future studies such as considering price-sensitive demands in problem, formulating the 

problem in fuzzy conditions, and integrating this problem with other pricing strategies. 
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