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Abstract 
Catastrophe bonds are among the essential instruments in providing a financial hedge for insurance 

companies and their policyholders. Catastrophic events are rare, and the shortage of data turns using 

probability theory indefensible. On the other hand, uncertainty theory is a reliable alternative to deal 

with these kinds of indeterminacies. We model the problem of pricing catastrophe bonds as an uncer-

tain optimization problem where the maximization of the cedent insurance company’s profit is con-

strained to the uncertain measure of ruin defined for the investors. Consequently, one could provide a 

tradeoff between being profitable for the ceding company and having reasonable protection for the 

investors. A solution to the optimization problem will be considered as the spread over the LIBOR, 

leading to a complete determination of the bond price. The results suggest the practicality of the mod-

el, especially the application of uncertainty theory in pricing catastrophe bonds. Finally, the uncertain 

ruin index is calculated for a real-world problem, and the results are compared with those obtained by 

probability theory.  

 
Keywords:  CAT bond, insurance-linked securities pricing, uncertainty theory, uncertain program-

ming, uncertain process 

 

Introduction 

  

Designing catastrophe bonds (shortly known as CAT bonds) and their pricing in a very uncer-

tain environment is the main concern of financial institutes. Though there are several theories 

dealing with the indeterminacy of situations, one may conclude to employ probability theory 

as the main paradigm since of its axiomatic framework and victorious history in solving many 

problems. However, probability theory requires sufficient reliable data because of its very na-

ture for approximating proper probability distribution functions. In the absence of this re-

quirement, the problem must be dealt with using some indeterministic theory designed for 

these specific situations. Here, we first describe the necessity for designing the CAT bonds 

before involving in the mathematical modeling. The use of uncertainty theory instead of prob-

ability theory would be inferred after presenting a suitable background about the bond struc-

ture. We hope it fills the gap in this area and provides a sensible justification for our proposed 

approach. 

The term “uncertainty” is a general concept in the scientific field, which defines the envi-

ronment in which the future outcome cannot be fully predicted for a particular event. Here, it 

refers to the specific notion introduced in the uncertainty theory, suggested and mathematical-

ly axiomatized by Liu (2007). This theory works well in dealing with the problems to deal 

with which an expert and his opinion quantify the uncertain situation. Especially in some 

highly unpredictable phenomena, one has just the option of relying on the expert opinion 
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about the potential outcome. Such situations reveal themselves in diverse fields, from the out-

break of a fresh contagious disease like COVID-19 to natural disasters like floods, tornadoes, 

and volcanos. Even though some data may exist, such events’ complicated and uncovered na-

ture implies inviting some experts to quantify their possible effects on the general economy 

and its different sections. In this study, we project this uncertainty on a financial instrument 

called CAT bonds and analyze its effectiveness in the decision-making process. The main ob-

jective of this study is to provide a methodology for pricing CAT bonds using the tools pro-

vided by the uncertainty theory.  

Natural disasters such as earthquakes and floods would simultaneously result in dramatic 

damages and massive financial losses to civilians and financial institutes. The main character-

istics of these events are their low frequency and high severity, making it almost impossible to 

predict their aftermath properly, and consequently complicate their accurate hedging. In actu-

arial science, such events are known as catastrophic events. The uncertainty is tied to a catas-

trophe, mainly to its potential occurrence and scale. Here, we do not aim to model other as-

pects of the insurance business that also have some sort of uncertainty in their nature. Moral 

hazard and associated behavior of the customers as well as the implications enforced by the 

governmental organizations are some other types of uncertainties. While these features can 

also be incorporated into the model, we do not address them here due to the complexity re-

sulting from these considerations. See Tajeddini and Trueman (2016) and Tajeddini and 

Mueller (2019) for more cases of these kinds of uncertainties. 

Due to these particularities of catastrophic events, insurance companies are highly exposed 

to such conditions; hence, they usually cannot fully or partially meet their commitments as a 

result of the overburdening claims of these events. To deal with this challenge and avoid un-

desired failure, insurance companies utilize alternatives, e.g., reinsurance, to transfer fully or 

share the associated risks partially to another party. However, the reinsurance companies may 

not be powerful enough to cover the commitments; thus, more reliable protection would even-

tually be necessary. CAT bonds have been a trustable instrument to transfer such an unbeara-

ble risk to the capital market, the place where the risk can be properly hedged. The next few 

paragraphs are devoted to defining the structure and the role of different parties involved in 

the CAT bond’s performance in the capital market. 

A CAT bond is insurance-linked security designed to deliver some share of predefined 

risks to the capital market. Its risk is attached to the hazard of severe natural events (e.g., hur-

ricanes, earthquakes, volcanoes, and floods) or human-made disasters (e.g., nuclear power 

plant failure, wildfires, and mining accidents). These bonds empower insurance and reinsur-

ance companies by enabling them to meet capital requirements obliged by the regulators. 

Moreover, they provide the flexibility required for companies to endure more risks and en-

gage in their very business (Krutov, 2010). The basic frameworks of the CAT bonds are de-

signed to be flexible over different kinds of events and the involved parties’ concerns.  

A CAT bond intrinsically includes several specific triggers for activation. Depending on 

the bond’s terms, the activation would partially or completely diminish the investors’ princi-

pal. Because of this inherent credit risk attached to a CAT bond, investors expect a higher re-

turn rate than other securities such as corporate bonds (Bodoff & Gan, 2009). This extra re-

ward makes the bond more interesting, while it comes with an unexpected higher risk. Hence, 

these bond features demand very careful treatment in the pricing process as it is counted as 

the main feature in introducing to the capital market. Furthermore, the CAT bond can include 

a coupon payment or be a zero-coupon bond, making it more flexible and optional. In the fol-

lowing, a standard version of the bond is described in detail. Note that more details would be 

attached to such a model for a specific event, and the components would vary based on 

agreements between the parties. 
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Structure of a CAT Bond 

 

A CAT bond generally has three players: the sponsor (cedent) intends to transfer the corre-

sponding risk to the capital market, the Special Purpose Vehicle (SPV) that issues the bond, 

and the investors. They admit this risk against gaining potential higher profit. The sponsor can 

be an insurance or reinsurance company or any entity looking for such protections. SPV in-

volves in the contract with the sponsor to issue its risk through the bonds. It collects the pre-

mium from the sponsor and proceeds from the sale to a collateral account. The sponsor has no 

claim on the assets, and SPV is considered a bankruptcy-remote body. Conditioning on no 

catastrophic event mentioned in the bond, investors might receive a coupon periodically. An-

other option would be collecting the whole amount at the end of the term, including the initial 

premium and additional profit calculated using an agreed interest rate. The interest rate is 

mostly based on LIBOR added with an extra spread to cover a potential occurrence risk of the 

catastrophic event. If the mentioned catastrophe in the contract happens during the bond term, 

the investors lose a part of or the whole principal. SPV then compensates the sponsor against 

the loss. A simplified scheme of this structure is depicted in Figure 1. As pointed out in Bo-

doff and Gan (2009), the coupon is a sum-up of LIBOR and a spread. Since the swap coun-

terpart contract essentially fixes the LIBOR, the only parameter to calculate in the pricing 

process is the spread. Spread, on the other hand, is perfectly related to the collected premium 

from the sponsor. Therefore, identifying a proper spread is a challenging issue in the field. 

 
Figure 1. A Simplified Structure of a CAT Bond 

It should be noted that almost all model elements in expressing catastrophic events intrin-

sically have indeterministic nature since they are among the most unpredictable phenomena in 

nature. For example, the number and amount of losses in a particular period are unknown be-

cause of the underwritings associated with such an event. By overlooking all uncertainties, 

deterministic models do not appreciate the problem’s conditions and cannot be reliably adopt-

ed for a real-world instance. Different approaches are considered to handle the indeterminacy 

of the problem. Although several studies have been carried out in CAT bond pricing using the 
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probability theory, there are still some essential challenges in the field. Note that considering 

several scenarios for the possible outcome is an option. Probabilistic models define a structur-

al procedure to discover a pattern out of the data. To this end, they may need sufficiently 

trustable data, which is not accessible in most cases. Therefore, some existing data on similar 

events are utilized to generate more likely scenarios and associate a probability distribution to 

each of them. However, there is no specific modeling tool for predicting the potential out-

come of all possible scenarios.  

Moreover, estimating the parameters and consequently pricing the bond, which needs cost-

ly calculations, are accompanied by several simplifications in the model. More importantly, as 

a probabilistic model’s basic ingredients, suitably collecting data and filtering the samples are 

not always attainable. In summary, probabilistic elements are not properly constructed in 

these situations, and generating exact distribution functions is almost impossible. Consequent-

ly, applying a probabilistic model would produce a solution that does not accurately interpret 

reality but becomes an extremely simplified version. 

In such a situation, when data are sparse and not reliable, another option for the production 

of some information is to invite some experts in the field, e.g., seismologists and economists, 

to contribute their opinions on the possible quantified outcome. They might be the only avail-

able raw data considered through the whole CAT bond modeling and ultimate pricing task in 

many situations. It means that the whole modeling procedure and inference process is based 

on expert reasoning, and we need a strong methodology for the inference process.  

To model human reasoning in a mathematical framework, Liu (2007) proposed a nonde-

terministic approach, referred to as uncertainty theory. It is a well-structured construction to 

handle problems when there is not enough data, and one must either work with a very small 

sample or rely on the expert’s opinion. Uncertainty theory has been designed to deal with 

problems in which belief is the benchmark of modeling, and basic structures such as distribu-

tions are made based on the quantitative opinion of some experts in the field. It benefits from 

the measure theory’s axiomatics for incorporating the belief degree in analyzing uncertain 

events. One of the main differences between uncertainty theory and probability theory is how 

the independence of events, and later of uncertain variables, is defined (Liu, 2017). Referring 

to the nature of catastrophic events for which no data exists or existing data cannot be applied 

to a fresh event, a reasonable choice is to construct the whole modeling process on uncertainty 

theory. Especially, it can be inferred that CAT bonds pricing is more adjustable to be studied 

through uncertainty theory rather than probability theory. We refer the interested reader to Liu 

(2012, 2017)  for a good discussion about the logic and arguments behind this theory’s axi-

oms and the convincing logic behind the theory itself. 

This paper studies the CAT bond pricing problem from the uncertainty theory standpoint 

and assumes that an expert opinion is available for some of its uncertain factors. We generally 

consider rare events where relevant data are scarce and mostly not trustable. Using simple and 

practical calculations in this theory, we model an insurance company’s losses and gains as an 

optimization problem to identify the optimal amount of spread beneficial to both the sponsor 

and the investor, using the capabilities of uncertainty theory. To the best of our knowledge, 

this is the first study of pricing CAT bonds using this theory; we believe our work would be a 

benchmark for further research projects and interesting findings in this very practical subject 

and similar situations.  

The rest of the paper is organized as follows. We first mention some findings from the sto-

chastic point of view in Section 2. Then, we briefly review uncertainty theory and mention 

some of the necessary concepts we use in our model in Section 3. The model is proposed in 

Section 3.1, including definitions of the uncertain process describing the CAT bond and de-

vising an optimization model. Section 4 is devoted to a prototype instance in addition to a re-
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al-world sample. The proposed model’s tractability and practicability are also examined in 

these examples. Finally, in Section 5, some concluding remarks are mentioned, and further 

research directions are suggested. 

 

Literature Review 

 

Hurricane Andrew in 1992 was the first catastrophic event whose risk was adjusted as a call 

option spread and introduced to the capital market. It was withdrawn later due to the lack of 

trading volume. In 1994, Hannover Re Group designed a CAT bond and issued USD 85 mil-

lion of risk to the market. Covering earthquake risk in Tokyo was the subject of a CAT bond 

in 1999 (Cummins, 2012). Over recent years, the trust in CAT bonds has been increased, and 

the financial market is more engaged toward introducing other standard cases of these insur-

ance-linked securities. As reported by Artemis deal directory, just in 2020, more than USD    

billion insurance-linked securities have been issued, with more than    billion outstanding 

CAT bonds taking the dominant position in this market share (Artemis, 2020). 

Pricing is the most important task in proposing a CAT bond to the capital market. It is al-

ways challenging for actuaries, and numerous studies have been devoted to this problem. Ex-

isting approaches can be categorized as economic and contingent claims methods. In the for-

mer, the historical data are used to fit the pricing parameters into a regression function. The 

model applies the produced function as the basis in the future pricing process of afresh-

offered bonds. Lane (2000) used a power function for the regression, where the probability of 

the first loss and the conditional expected loss are the main drivers of the model. Lane and 

Mahul (2008)  then employed a substantial volume of data about the previously issued bonds 

to provide a linear function containing some involved parameters such as the expected value, 

peril, reinsurance cycle, and rating. These findings are useful when the market has a reasona-

ble history of trading CAT bonds, whereas it is barely practical for markets with no such rich 

history. Moreover, each specific event demands its own data, and defined CAT bonds cannot 

be very valuable for the other catastrophic events. 

 Similar results have been obtained by taking more parameters into account (Lei et al., 

2008). Bodoff and Gan (2009) generalized these sorts of models to make a more trustful re-

gression function, where identifying the spread of the CAT bond was the objective of the re-

gression. Several perils were combined to extend the idea one more step toward a complete 

model, considering almost all of the parameters involved. For more details, we refer the inter-

ested reader to Braun (2016) and Wang (2002), and the review paper by Galeotti et al. (2013). 

In the contingent approach toward pricing, the policy is similar to those used in defaultable 

bonds introduced by Duffie and Singleton (1999). The market’s response is not considered in 

this approach, but the potential claims’ future and prediction are the main components. The 

price of a CAT bond is the basis of modeling rather than its spread over the interest rate. Here, 

we mention some of the pricing methods related to this approach. Equilibrium modeling is 

another approach where the involved individuals, insurance company, and investors of the 

CAT bond are the main units of analysis. Utility and concerns about the involvement are in-

corporated into the model, and the final solution satisfies the parties as an equilibrium point. 

This method was pioneered by Aase (1999) and Cox and Pedersen (2000). Vaugirard (2003) 

used a jump-diffusion process to model the dynamics of the underlying index. In another 

study by Zimbidis et al. (2007), the so-called historical probability measure was the basis of 

the methodology. Nowak and Romaniuk (2013) applied the results in Vaugirard (2003) to ex-

tend it to an improved and more general model. In their generalized model, the Vasicek model 

(1977) was applied for the interest rate dynamics in the pricing of both the CAT bond and the 

interest rate modeled as a Cox-Ingersoll-Ross process. Using the idea proposed in Duffie and 
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Singleton (1999) and Zhou (1997), Baryshnikov et al. (2001) priced the CAT bonds utilizing 

an auxiliary bond, referred to as threshold bond. 

Stochastic optimization has also been applied in catastrophe risk modeling (Ermoliev et al., 

2000). The authors implemented the obtained model to calculate some parameters such as ru-

in probability as the key risk measure in calculating the insurance premium. Later, the optimi-

zation methods have been applied to optimally combine the reinsurance and the CAT bond to 

benefit the sponsor in proposing an interesting price to the market (Lakdawalla & Zanjani, 

2012). 

As an alternative in nondeterministic modeling, fuzzy theory was also applied in the CAT 

bond pricing problem (Nowak & Romaniuk, 2013, 2014, 2017). Many arguments are on 

fuzzy theory’s efficiency over belief-based problems (Henkind & Harrison, 1988; Kickert, 

1979; Liu, 2017). Here, we mention a few of its disadvantages in dealing with problems like 

catastrophe risk measuring. First, recall that there are many choices for membership function, 

with no clear reasoning in utilizing the one with the most efficiency. Detecting a suitable and 

problem-oriented membership function is always restricting greatly. Moreover, computational 

operators in this theory are either too complicated or too simple. While those complicated 

ones are more sensible in real-world problems, those with simple constructions do not per-

form better in fitting practical problems. Moreover, the flexibility of the choices in different 

parts of this theory makes more trouble than easing the model and finding the right solution 

(Henkind & Harrison, 1988).  

 

Basics of Uncertainty Theory 

 

Over a nonempty set  , consider  -algebra  . Each element     is called an event. A set 

function   from   to       satisfying the following axioms is referred to as an uncertain 

measure (Liu, 2007). 

Axiom 1 (Normality Axiom)       .  

Axiom 2 (Duality Axiom)              for any event  .  

Axiom 3 (Subadditivity Axiom) For every countable sequence of events        , 

11

{ ‍Λ } ‍{ Λ }
 



i i

ii

 (1) 

The triplet         is referred to as an uncertainty space. The fourth axiom, introduced 

for the product of events, distinguishes the probability theory from uncertainty theory.  

Axiom 4 (Product Axiom) (Liu, 2009) Let ( , , )k k kΓ L  be uncertainty spaces for   

     . The product uncertain measure   is a measure on product  -algebra 1 2   nL L L  

satisfying  

  k1 1
Λ {Λ }.k kk k




 
   (2) 

An uncertain variable is defined to quantitatively deal with phenomena in uncertainty 

theory (Liu, 2007). It is a measurable function from an uncertain space ( , , )Γ L  to the set of 

real numbers, in which for any Borel set  , the set { } { | ( ) }   ξ B γ Γ ξ γ B  is an event.  

Uncertainty distribution of an uncertain variable   is defined as (Liu, 2007) 

   Φ , .   Rx ξ x          x  (3) 
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An uncertainty distribution Φ( )x is called regular if it is a continuous and strictly 

increasing function w.r.t.   for all  0 Φ 1 x , and  

lim Φ( ) 0, lim Φ( ) 1.
 

 
x x

x          x  (4) 

Satisfying this property lets one to bypass the computation burden of rigorous uncertainty 

distributions by using their inverses, making the solution methods more tractable. Let   be an 

uncertain variable with regular uncertainty distribution‍ Φ( )x . The function 1Φ ( ) α  is called 

inverse uncertainty distribution of  .  

 Some uncertain variables have been defined in uncertainty theory. The most typical one is 

the linear uncertain variable recognized by its uncertainty distribution as  

 

0  i   ,

Φ  i   ,

0  i   ,





  




f x a

x a
x f a x b

b a

f x b

 (5) 

and denoted by ( , )a b where   and   are real numbers with‍ a b . Its inverse uncertainty 

distribution is 

   1 1 .   Φ α α a αb  (6) 

An uncertain variable   is called normal and denoted by ( , )e σ (Liu, 2007), if it possesses 

the uncertainty distribution 

 
 

1

Φ 1 exp , ,  
3



  
     

  
R

π e x
x x

σ
 (7) 

where   and   are real numbers with‍ 0σ . The important practical one in our study is the 

lognormal uncertain variable. Its uncertainty distribution reads as 

 
1

ln
Φ( ) 1 exp , 0.

3



  
     

  

π e x
x x

σ
 (8) 

Its inverse uncertainty distribution is  

1 3
Ψ ( ) exp ln .

1


 

    

α
α e σ

π α
 (9) 

Uncertain variables 1 2, , , nξ ξ ξ  are independent if (Liu, 2009) 

 
1

1

‍( ) ,




 
    

 


n n

i i i i
i

i

ξ B ξ B  (10) 

for arbitrary Borel sets           .  

Let 1 2, , , nξ ξ ξ  be independent uncertain variables with uncertainty distributions

1 2Φ ,Φ , ,Φ n , respectively. If 1 2( , , , ) nf ξ ξ ξ is strictly increasing w.r.t. 1 2, , , mξ ξ ξ and strictly 

decreasing w.r.t.‍ 1 2, , ,  m m nξ ξ ξ , then   is an uncertain variable with the uncertainty 

distribution (Liu, 2010) 
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 
1 2

1 1( , , , )

Ψ( ) sup min Φ ( ) min (1 Φ( )) .
     

  
n

i i i
i m m i nf x x x x

x x x  (11) 

Theorem 3.1 (Liu, 2007) Let 
1 2, , , nξ ξ ξ  be independent uncertain variables with regular 

uncertainty distributions 1 2Φ ,Φ , ,Φ n , respectively. Furthermore, let 1 2( , , , ) nf ξ ξ ξ be strictly 

increasing w.r.t. 1 2, , , mξ ξ ξ and strictly decreasing w.r.t.‍ 1 2, , ,  m m nξ ξ ξ . Then,   is an uncer-

tain variable with the inverse uncertainty distribution   

1 1 1 1 1

1Ψ ( ) (Φ ( ), ,Φ ( ),Φ (1 ), ,Φ (1 )).    

    m nα f α α α α  (12) 

Theorem 3.2  (Liu, 2010a) Let 1 2, , , nξ ξ ξ  be independent uncertain variables with regular 

uncertainty distributions 1Φ , ,Φ n , respectively. If  1, , nf ξ ξ is strictly increasing w.r.t. 

1 2, , , mξ ξ ξ and strictly decreasing w.r.t.‍ 1 2, , ,  m m nξ ξ ξ , then  

 1 2( , , , ) 0 , nf ξ ξ ξ  (13) 

is the root   of the equation  

1 1 1 1

1 1(Φ ( ), ,Φ ( ),Φ (1 ), ,Φ (1 )) 0.   

    m m nf α α α α  (14) 

If 1 1 1 1

1 1(Φ ( ), ,Φ ( ),Φ (1 ), ,Φ (1 )) 0   

    m m nf α α α α for all  , then we set‍ 1α ; and if 
1 1 1 1

1 1(Φ ( ), ,Φ ( ),Φ (1 ), ,Φ (1 )) 0   

    m m nf α α α α for all  , then we set    . 

The concept of expected value for an uncertain variable   is defined as (Liu, 2007) 

     
0

0

‍‍,





    E ξ ξ r dr ξ r dr  (15) 

provided that at least one of the two integrals is finite. Moreover, if the uncertainty distribu-

tion is regular, expected value can be calculated by  

 
1

1

0
[ ] Φ .E ξ α dα   (16) 

Uncertain Process 

 

Let ( , , )k k kΓ L  be uncertainty spaces for‍ 1,2, k , and   be a totally ordered set (e.g., 

time). For the sake of simplicity, we use the term “time” for each member of this set. An 

uncertain process is a function ( )tX γ  from ( , , ) k k kT Γ L to the set of real numbers such 

that { }tX B  is an event for any Borel set   of real numbers at each time  . An uncertain 

process    has independent increments if  

0 1 0 2 1 1
, , , , ,


   

k kt t t t t t tX X X X X X X  (17) 

are independent uncertain variables where    is the initial time and 1 2, , , kt t t  are any times 

with 0 1 2    kt t t t .  

Definition 3.1 (Liu, 2008) Let 1 2, ,ξ ξ  be iid uncertain interarrival times. Define 0 0S  

and 1 2   n nS ξ ξ ξ  for‍ 1n . The uncertain process 

0
max{ | },


 t n

n
N n S t  (18) 
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is called an uncertain renewal process.  

Definition 3.2 (Liu, 2010b) Let 
1 2, ,ξ ξ  be iid uncertain interarrival times. Further, let 

1 2, ,η η  be iid uncertain rewards or costs (losses in insurance case) associated with  -th inter-

arrival time    for‍ 1,2, i . Then  

1

,



tN

t i

i

R η‍  (19) 

is called a renewal reward process, where 
tN  is the renewal process with uncertain interarri-

val times
1 2, ,ξ ξ .  

Theorem 3.3 (Liu, 2010b) Let    be a renewal reward process with iid uncertain interarri-

val times 1 2, ,ξ ξ  and iid uncertain rewards        . Assume  1 2, ,ξ ξ  and  1 2, ,η η  are 

independent uncertain vectors, and those interarrival times and rewards have uncertainty dis-

tributions   and‍Ψ , respectively. Then, tR has uncertainty distribution  

0
Υ ( ) max 1 Φ Ψ( ) .

1

   
     

   
t

 k

t x
x

k k
 (20) 

Theorem 3.4 (Liu, 2010b) Let tR  be a renewal reward process with iid uncertain interar-

rival times 1 2, ,ξ ξ  and iid uncertain rewards        . Assume  1 2, ,ξ ξ  and  1 2, ,η η  are 

independent uncertain vectors. Then, the reward rate  

1

1

lim ,


t

t

R η

t ξ
 (21) 

in the sense of convergence in distribution.  

Theorem 3.5 (Liu, 2010b) Let    be a renewal reward process with iid uncertain interarri-

val times 1 2, ,ξ ξ  and iid uncertain rewards 1 2, ,η η . Assume  1 2, ,ξ ξ  and  1 2, ,η η  are 

independent uncertain vectors. Then,  

1

1

[ ]
lim .


 
  

 

t

t

E R η
E

t ξ
 (22) 

Definition 3.3 (Liu, 2013) Let tU  be an insurance risk process responsible for modeling 

the growth or decline of an insurance company’s wealth. Then, the ruin index is defined as 

the uncertain measure that    eventually becomes negative, i.e.,  

 
0

inf  0 .


 t
t

Ruin  U  (23) 

 

Optimization Model of the CAT Bond Pricing  

 

This section presents an optimization model for the CAT bond pricing in an uncertain envi-

ronment. The objective is to maximize the sponsor’s wealth while the investor’s profit is sat-

isfied in some constraints. First, note that the sponsor prefers to regain as high as possible 

from its investment, which could be defined as an asymptotic expectation of its wealth. On 

the other hand, since the investor’s earn cannot be negative, we restrict its expected value to 

be positive at any time. Moreover, to be enough motivation for investment, this earning must 

be greater than the one in a fixed-interest-rate business. 
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Recall that all the processes involved in the model are continuous, i.e., there is a chance of 

a claim occurrence at each time interval with a continuous claim distribution. Thus, applying 

the ultimate ruin instead of the ruin in a finite time span makes more sense. In conclusion, one 

can divide that time interval into many potential subintervals and assume that the claims occur 

in these subintervals. Making it clearer, we consider a model in which the investor and the 

sponsor’s point of view are infinite. To do this end, we assume that the bond term’s termina-

tion time is divided into many reasonable small subintervals. In this way, the investor’s possi-

bility of losing their whole investment does not depend on time. Now, we construct the pric-

ing model step by step to reach the final optimization problem. 

Consider a CAT bond where the sponsor wants to transfer the risk of exposure to a high 

level of claims to the capital market in case of a catastrophic event. An attachment point can 

identify this high level, denoted here by  . Note that a CAT bond structure has fixed collat-

eral, and it cannot provide the sponsor with an amount more than this number. Therefore, the 

bond’s trigger is defined as a parameter, activated when the sponsor’s loss exceeds  . The 

trigger can be defined as   , and the indicator function is defined as  

1
1 .

0 . .


 


t

A

ifR A

o w
 (24) 

when the trigger is activated, the sponsor is compensated accordingly. 

Here, we denote the CAT bond as one total amount divided with identical spread among 

investors according to the number of presented bonds to the market. Thus, without loss of 

generality, we model the problem with one sponsor and one investor. The risk process of the 

sponsor is  

 1 1 .    t I C t t AU u π π t R R  (25) 

Here   is the initial capital of the sponsor,    is the insurance premium collected from in-

sureds,    is the spread, is the aggregate loss process in which   , and    are frequency and 

severity processes of the claims, respectively. We assume that    is iid uncertain variables, 

and without loss of generality, the severity and frequency of the claims are independent. 

We model the investor’s wealth as  

 2 1 1 ,   t C t AU Π rt π t R  (26) 

where   is the collateral, i.e., the amount of pooling collected from the investor. We also con-

sider a linear interest rate that the investor earns as a part of the return for the investment. No-

tice that the investor bears a significant risk by exposing to losing risk all or a considerable 

amount of his principal when the trigger is activated. Therefore, he requires an award yielded 

through the spread for taking such a risk. 

Three main considerations make up the optimization problem: 

1. The expected return of the process representing the sponsor’s wealth must be as high as 

possible. Here, we consider it as the model’s objective function. It refers to the point 

that the sponsor makes a profit in the long run. 

2. The investor’s wealth cannot be negative during the bond’s term. Therefore, as a con-

straint, we assume that the uncertain measure of ruin related to the investor’s process is 

not greater than a small positive number. 

3. Because of the potential higher risk that the investor takes by purchasing a CAT bond, 

he expects a spread that compensates with an amount higher than the asymptotic expec-

tation. 

We devise the optimization model as follows. 
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 
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max lim
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 (27) 

Here   is fixed and determined by the expert based on the number of underwritings and 

several other important and deterministic parameters. Its value can also be considered an un-

certain variable, whereas we assume that the expert fixes it as a real number for simplicity. 

The objective function ensures that the sponsor’s return is maximized under the CAT bond’s 

diversification in the long run. The first constraint reflects the fact that the investor cannot 

lose more than its principal. Therefore, considering the experts’ opinion on the claims’ fre-

quency and severity, the uncertain measure of ruin (ruin index) should be kept under a pre-

specified small number . This restriction is satisfied by the control parameter   . The second 

constraint guarantees the CAT bond to be motivating enough by respecting the investor’s de-

sire; otherwise, it is rejected by the capital market. Thus, the spread and its possible interest 

rate are bigger than the asymptotic expected loss. Recall that the sponsor’s final gain is the 

difference between the premium amount and the required hedge price. Considering the solu-

tion to this optimization problem, the sponsor would decide not to purchase protection 

through the CAT bond when it is more expensive than the collected premium.  

 In uncertainty theory’s framework, validating each of these inequalities would be a chal-

lenging task. In the sequel, we provide tools and approximations to reduce this difficulty and 

make the model more practical. This methodology is fresh and can be easily extended to pric-

ing other instruments providing that the uncertainty theory is the basis of investigation.  

 

Simplification of the Objective Function and Constraints 

 

It is important to remind that working with continuous functions in uncertainty theory is more 

manageable than a step function. In this study, we consider the sigmoid function  

1
1 1 .

2

   
    

  
A

x A
tanh

b
 (28) 

for smoothing the indicator function. Any other similar function could be utilized with a po-

tentially negligible disparity in the results. Observe that this function converges to    as 

   . In this way, the process assures the sponsor’s wealth reduces to  

 1 1 .
2

   
       

  

t t
t I C t

R R A
U u π π t R tanh

b
 (29) 

The following theorem presents the objective function, in the long run, using (28).  

Theorem 4.1  Let    be a renewal reward process with iid uncertain interarrival times 1 2, ,ξ ξ  

and iid uncertain rewards         Assume  1 2, ,ξ ξ  and  1 2, ,η η  are independent uncertain 

vectors with uncertainty distributions   and  , respectively. Further, let (21) hold. Then  

1

lim ( ).


 t
I C

t

U
π π

t
 (30) 
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Proof. Notice that  

| tanh( ) | 1.



x A

b
 (31) 

Using Cauchy-Schwartz inequality and the fact that 1
 

 
 

tR A
tanh

b
as    , we have  

1

1 1 0.
2 2
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bR R R A R
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Consequently, the objective function becomes I Cπ π .  

Observe that introducing the CAT bond mostly depends on its attractiveness to the market. 

On the other hand, considering a CAT bond structure and the complicated covered risk, al-

most all CAT bonds are purchased by institutions, hedge funds, and organizations. Therefore, 

we emphasize that the first constraint is of higher importance. It assures that the investor’s 

wealth never becomes negative almost sure. Let us rearrange the investor’s wealth process by 

applying (28) and considering   
 

 
  that makes this function strictly increasing. The inves-

tor’s process is then redefined as  

     2 1 2 .
2

     t
t C t

R
U Π Πr π t tanh R A  (33) 

Observe that claims’ arrival times coincide with some point of the time interval, and ruin 

can only happen in one of these arrivals when     . Therefore, we consider   ∑  
  
     , 

where            are interarrival times and   ’s are the claims’ arrival times. Consequent-

ly, the investor’s risk process becomes 

 2 1

1 1

1 2 .
2

t
tt
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NN

ii
t C i i

i i

η‍
U Π Πr π ξ tanh ‍η A
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   


   (34) 

Note that the arrival time of the  -th claim is 1 2 .   kξ ξ ξ  It means that we would only 

be concerned about these time points because they are the only potential ruin occurring mo-

ments. Using   
  indicates that one can always scale the time by considering the points where 

claims happen. Therefore, (34) is reduced to the following relation.  

 2 1

1 1

1 2 .
2

k
k k

ii
k C i i

i i

‍η
U Π Πr π ξ tanh η A
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
   (35) 

Considering the results of Vakili and Ghaffari-Hadigheh (2021), ruin for the investor hap-

pens when  

 1

1
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for a   big enough. Let  

  1
1 2
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2

k
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and  

   1 2
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h ξ ξ ξ Πr π ξ‍  (38) 

Notice that    g η h ξ is an increasing function w.r.t.   and a decreasing function w.r.t.  . 

Using Theorem 3.1, the inverse distribution of    g η h ξ is  
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Further, Theorem 3.2 says that the uncertain measure of ruin is the root   of  
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Finally, the last constraint is reduced to the following simple form.  
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It must be remarked that the ruin index, related to the investor in the constraints, can be di-

rectly calculated using equations (20) and (23). However, it results in a more complicated 

formula for the uncertain measure of ruin. For more details on the complexity of this ap-

proach, see Liu (2013, 2017) and references therein.  

Consider an insurance company that is looking for a hedge associated with a particular risk 

of a catastrophic event. Moreover, assume that a market can potentially take the risk in ex-

change for a return significantly higher than the interest rate defined through LIBOR. The fol-

lowing theorem summarizes the obtained results.  

Theorem 4.2. Let the insurance and investor wealth process be defined by (25) and (26), 

respectively. Then, an optimal solution of the optimization problem (27), if it exists, is an 

equilibrium price that satisfies the concerns of both the sponsor and the investor of the CAT 

bond.  

 

Computational Experience 

 

We first consider a simple illustrative example to show the performance and applicability of 

the proposed approach. We also examine the model on a practical instance and discuss the 

results against the findings using the probability theory.  

Example 4.1 Assume that the basic risk is tied to an earthquake occurrence in a particular 

area for coverage of civilians property insurances. Several small insurance companies under-

write a bulk of contracts, say one million. A reinsurance company, as the sponsor, takes some 

risks for smaller insurance companies and wants to pool capital from the market for a hedge 

through a CAT bond. 

To be numeric, let 0.03, 300 , 0.0001, 100000, 1 , 2     Ir  π m ε K Π b A b . To interpret 

this situation, we assume the severity of each claim as a lognormal uncertain variable. This 
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uncertain variable can reasonably mimic the behavior of the situation since its mean and vari-

ance rises tremendously fast depending on the parameters  ,e σ , remarking that the mean ap-

proaches to infinity for   
 

√ 
. Let the severity of the claims be represented by‍ (4,1)   

with the inverse distribution 

 1 3
Ψ 4 .

1


 

    

α
α exp ln

π α
 (42) 

We also suppose that experts’ belief results in         for the number of claims with the 

inverse uncertainty distribution 

 1Φ 2 1.  α α  (43) 

This assumption means that the uncertain waiting times for consecutive claims follow an 

uncertain linear distribution. We must make an important remark on the time frame. Notice 

that in empirical implementations, we do not have a continuous time-evolving. Here we as-

sume a lattice of the time-space, determined based on the experts’ opinion on the problem. In 

this example, the inter-arrival time distribution indicates the distance between arrival times on 

the lattice between 0 and 1 with different attached belief degrees. Without loss of generality, 

we assume the severity and frequency of the claims are independent. Therefore, the optimiza-

tion problem is (numbers are scaled by 410 ) 
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where  R α is  
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(45) 

We used the online version of the Mathematica software to solve this optimization prob-

lem. The optimal solution is           . Suppose we designed the hedge to be covered by 1 

million bonds, each having USD 1000 face value. Therefore, the spread over LIBOR for each 

bond is about     , meaning that if the trigger is not activated, the investor receives      

interest for each unit of the CAT bond. 

The next example is a comparison of results from the probability theory and uncertainty 

theory perspectives. The purpose is to show how important the choice of underlying indeter-

ministic theory is and denote that those findings have different interpretations in these two 

different paradigms. Results indicate that probability theory and uncertainty theory are de-

signed for problems with different natures and cannot be replaced with one another. 

Example 4.2. For a real-world instance, we consider the data of Swedish fire insurance 

during 1958-1969 and investigate the difference of ruin index in uncertainty‍theory and prob-

ability theory. As detailed in Benckert and Jung (1974), denote  In Thorin and Wikstad 
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(1977), the authors calculated the probability of ruin based on the statistical result of Benckert 

and Jung (1974).  

We first fitted the data on some uncertainty distributions and concluded that uncertain 

lognormal distribution with 1.6μ   and 1.77σ is the best choice for the severity. Further, the 

linear uncertain distribution (0,2) interprets the inter-arrival times quite well. Uncertain 

measures of ruin for K 100 and‍ K   , as well as for different initial capital values, were 

calculated. The results are compared to those obtained in Thorin and Wikstad (1977) using 

probability theory (see Table 1). 

Table 1. Comparison of the Measure of Ruin in Probability and Uncertainty Theory Calculated for 

Swedish Fire Insurance’s Data 1958-1969 

 

Discussion 

 

As pointed out by Liu (2017),  probability theory is the best choice when sufficient data ex-

ists. It was also revealed that uncertainty theory is more conservative, meaning that it assigns 

higher belief degree to the occurrence of ruin. Therefore, it identifies a higher premium to 

cope with the risk. When time goes to infinity, the probability of ruin increases. For example, 

for‍ 100u , it rises from 0.03701  to 0.55074  when   goes from 100  to infinity. Further, the 

probability of ruin rapidly reduces by increasing the initial capital. In contrast, the uncertain 

measure of ruin is constant for every amount of initial capital in the long run, and does not 

sharply fall by increasing the initial capital for‍ 100T .  

Interestingly, uncertainty theory’s results seem more sensible when the results for the long 

run are applied. When the ultimate ruin is considered, the future does not obey the far past as 

the probability theory might assume, and using uncertainty theory shows some sort of inde-

pendency in time. On the other hand, uncertainty theory considers the catastrophic events in 

the future, which is quite possible in the long run, and variation in the initial capital does not 

affect the risk measure. We also observed that when the initial capital rises significantly, e.g., 

to‍ 710u   and higher, the uncertain measure of ruin drops remarkably to almost zero.  

In defining a CAT bond, as it is visible from Table 1, satisfying the ruin-related constraints 

requires a higher price for the CAT bond. There might be some reasons behind this conclu-

sion. First, the data is available only for a short period between the possible past and future 

time span. Secondly, the fast growth of populations and advances in the cities’ development is 

not treated in the modeling process. Observe that limited data or untrustworthy information is 

the main motivation for referring to an expert and using uncertainty theory. Moreover, the re-

sults provided by probability theory are useful in a short period after they are obtained. There-

fore, the risk of ruin is less than the probability theory, as reflected in Table 1.  

 

Conclusions and Remarks 

 

In this study, the expert opinion was considered as the main tool in problem modeling in an 

Time   Probability of ruin Uncertain measure of ruin 

      

0 0.82192 0.10238 

100 0.03701 0.10119 

1000 0.00011 0.09116 

10000 0.00001 0.03814 

    

0 0.95238 0.10238 

100 0.55074 0.10238 

1000 0.04199 0.10238 

10000 0.00008 0.10238 
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uncertain environment. It was demonstrated that uncertain optimization could be considered 

as a practically implementable paradigm for pricing securities, especially insurance-linked 

ones such as CAT bonds. A highly complicated inequality, the ruin-related constraint, was 

approximated by a reliable and tractable substitute inequality. Nonetheless, we considered the 

optimization with only a single objective; the multi-objective version would be more interest-

ing and realistic. Moreover, modeling CAT bond’s structure and its pricing problem, with re-

insurance policy, will be a more sensible framework, too. This problem can also be consid-

ered with multiple objectives where each party’s favor is an objective. 

Another approach would be to utilize the expected value of the involved uncertain varia-

bles in the model and handle the optimization problem using vector optimization as a deter-

ministic and powerful tool in mathematical programming. Optimally fitting collected data 

from experts’ opinions into an uncertainty distribution and measuring its parameters is anoth-

er research line in practice.  
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