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Abstract 
This paper presents a two-phase approach to design an optimal personnel transportation network for 

the Bistoon Power Plant. In the first phase, a mathematical model of location-allocation for locating 

bus stops and allocating staff to bus stops has been formulated with the objective of minimizing the 

total walking distance for staff. For the second phase, a mathematical model of location-allocation-

routing with time window for selecting vehicles with the appropriate capacity for each route, locating 

the parking places (start nodes), vehicle routing, and trip scheduling is discussed with the two 

objectives of minimizing transportation costs and minimizing the maximum travel time of staff to 

ensure fairness among staff. One of the features of this study is the consideration of the distance 

between vehicle parking areas and the first demand nodes on each route in order to locate parking 

areas. Other expected side benefits of the implementation of this research are decreasing the total 

travel distances, traffic congestion, and air pollution. Despite the large number of nodes and data of 

the case study, the proposed mathematical models are solved by the exact solution method. In order to 

solve the two-objective model, the augmented epsilon constraint method has been used to find the 

Pareto solution set. 
 
Keywords: location-allocation (LA), location-routing problem (LRP), personnel transportation, two-

objective optimization, Epsilon constraint method. 

 

1. Introduction 

 

Nowadays, the optimization of systems and the creation of competitive advantage in the 

market are very important. They are the key success point of enterprises in the long – and 

even the short – run. Optimization has found wide applications in various fields of industries 

and services, optimization of production, logistics, and so forth. A successful sample of 

disaster relief logistics is presented by Bozorgi-Amiri et al. (2011), while a paper has been 

given in by Najafi Moghadam Gilani et al. (2020) in the field of building materials. 

Sometimes logistics are the costliest component in supply chains. Therefore, a special focus 

should be directed at the logistics optimization in the supply chains. A category of logistical 

outstanding issues is the transportation of passengers. One of the methods for obtaining job 

satisfaction and giving benefits to the personnel of a company is to provide appropriate 

transportation service for them. In this paper, the optimization of one transportation system is 
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discussed, which supplies the personnel of the Bistoon Power Plant. The quality of passenger 

transportation services depends on various indicators (parameters) such as cost, travel time, 

efficient use of the capacity of the passenger transportation system, proper travel scheduling, 

considering fairness among the involved components, considering the reduction of 

environmental damage, etc. 

Location-routing problems (LRPs) are the result of the combination and development of 

location problems as well as vehicle routing problems (VRPs). Locating is a strategic decision 

with a long-term planning horizon, while routing is essentially an operational decision with a 

short-term planning horizon. The purpose of the location-routing problems is to determine the 

location of facilities and the transit routes of vehicles that serve a number of customers within 

a specified period (while the demand of each customer is less than the maximum capacity of a 

vehicle). Each vehicle makes a route (tour) which uses one or more facilities to serve multiple 

customers. The first research in LRPs field was conducted by Boventer (1961) and Maranzana 

(1964), a basic and considerable model was presented by Perl and Daskin (1985), and a useful 

taxonomy and review for LRPs was presented by Lopes et al. (2013). Leksakul et al. (2017) 

have done a research on personnel transportation for a large-scale industrial factory. They 

argue that personnel transportation problems can be considered similar to the School bus 

routing problems (SBRPs). SBRPs consist of two sub-problems, namely bus stop location 

problem and vehicle routing problem. A combination of these two sub-problems is 

categorized as the LRP. In order to locate bus stops, two general methods are used, location-

allocation-routing (LAR) and allocation-routing-location (ARL). The LAR strategy first sets 

the bus stops regardless of the effect of the bus stop locations on the routing determination, 

then assigns students to these bus stops, and finally does the routing. ARL first clusters 

residential areas. Then, the bus stops are determined and the routes are specified for each 

cluster. Leksakul and colleagues have used the ARL method in their research. On the problem 

of the personnel transportation, a large number of personnel are picked up from different 

locations in a city (bus stops) and are brought to factories and at the end of their working day, 

they are returned to the same initial bus stops. It is necessary that these passengers be 

transferred at a specific time, because the factories start working at a certain time and their 

personnel should arrive on time, and it is the same for students. In this type of transportation, 

a different collection of vehicles is used, which may be different in capacity, operational 

costs, and speed. Regarding the operational costs of the vehicles involved, each vehicle is 

rented and the costs are calculated based on their capacity. A set of bus stops are assigned to a 

vehicle based on its capacity and the maximum travel time (Yüceer, 2013). 

Park and Kim (2010) have done a conceptual review of SBRP and have divided them into 

the following five sub-problems: data preparation, bus stops selection, bus routing, travel 

planning based on school bell (start and end time), and routes planning. In the data 

preparation problem, the road network has been specified. They investigated the bus routes by 

two exact and heuristic approaches. Azad et al. (2010) designed a two-echelon distribution 

network. In order to solve the problem, they considered two phases, with the first phase being 

an LA to locate distribution centers and the second phase being a VRP. Bahrami et al. (2016) 

considered a parcel distribution problem – including the hub location problem, which seeks to 

find optimum locations for establishing hubs and to allocate cities to them – and the vehicle 

routing problem – which attempts to find optimum routes to distribute parcels between cities 

all over the country. Both of problems are modeled in a mathematical model and solved by a 

meta-heuristics method.  

Guo et al. (2019) considered a bus routing and the passenger assignment problem with 

time windows on a graph network and formulated the problem as a mixed integer problem. 

They attempted to optimize the use of the vehicle capacities and considered the characteristics 
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of customized bus service problem by means of defining a group of constraints. They used 

branch and bound method and two heuristic methods to solve their problem. Some 

specifications of the problem of Guo et al. (2019) are: assumptions of homogeneity of 

vehicles; being identical in depot for all of the vehicles at a specific location; vehicle routing 

aimed at transporting passengers before returning to depot in the specific time intervals; time 

windows and service time are already given; quantity of travel demand from each origin to 

related destination and the travel time and distance of each arc are already given; the average 

capacity of all vehicles are constant and given; and all arcs are two-way.  

Farzadnia and Lysgaard (2021) considered an SBRP that includes locating bus stops, 

allocating students to the located bus stops, and generating a route to serve them. The problem 

is single-school and single-route. The objective of the model is minimizing the total walking 

distance from student residences to the bus stops, as a quality service factor, and the model 

restricts the route length to an upper bound as another quality service factor. They argue that 

quality service factors should be considered as objective(s) or constraint(s) in formulated 

models. Miranda et al. (2021) considered an SBRP with adjustable school working time, 

which means that the time students are received to school is a decision variable, and, as a 

result, the transportation costs will be reduced by 9%. This policy is useful when there are 

multiple destinations and there is no requirement that students be present at the same time at 

schools, whereas we do not have these requirements in our problem. 

The combination of the following items created unique research: 

1. Presenting a real case study of personnel transportation from residence to work with 

assumptions on the aforementioned problems in the problem description section. 

2. Considering different locations for vehicle parking instead of a central depot. 

3. Presenting a new constraint for defining corresponding relations between vehicles and 

movement start stations in related research fields. 

4. A solution method with the following attributes: 

 A location-allocation-problem mathematic model is formulated in order to minimize 

walking distances for staff. 

 A two-objective location-allocation-routing with the time window mathematical 

model is formulated in order to minimize the transportation cost and the maximum 

travel time. 

 The augmented epsilon constraint method is used to solve the two-objective problem 

and illustrate the efficiency of the solving method. 

The rest of the article is divided as follows. Section two describes the transportation of 

personnel at Bistoon Power Plant and Section three presents the used mathematical models. In 

Section four, the multi-objective solution of the generalized ε-constraint is introduced, and in 

Section 5, computational results are presented. Finally, in Section 6, the conclusions and 

managerial insights are presented. 

 

2. Problem Description: The Transportation Service of Bistoon Power Plant Personnel 

 

Operating of two 320 MW steam power plants, Bistoon Power Plant produces a total of 640 

MW of electricity and supplies it to Iran’s national electricity network. There are about 300 

personnel in Bistoon Power Plant who are working in five working shifts throughout the day. 

The busiest shift is a daytime working shift of the plant with a population of about 100 

employees, and the other shifts have smaller populations of personnel. The personnel 

residence, bus stops, and transportation vehicles’ start nodes are located within the city of 

Kermanshah, and Bistoon Power Plant, which is the destination of trips, is located 20 km off 

the city on the Kermanshah-Bistoon road (Figure 1). In Figure 1, the red points are the 
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demand nodes, the yellow points are the candidate bus stops, and the green point is the 

Bistoon Power Plant.  

 
Figure 1. A View of the Map of the Location and Nodes of the Problem  

Figure 2 shows a scheme of a feasible solution to the problem. The circles indicate the 

residence of the staff, the squares show the location of the candidate bus stops, shaded squares 

represent the located bus stops, the triangles point to the location of the vehicle depots, shaded 

triangles signify the located depots, and the hexagon expresses the destination of trips. The 

dotted lines show the assignment of staff to the bus stops and the arches indicate the passage 

of vehicles. 

 
Figure 2. A Feasible Solution to the Problem 

Since the transportation of each shift is independent of other shifts, and can be planned and 

routed independently, they can be assumed as independent problems. By gathering related 

data from each shift, they can be solved by similar designed mathematical models. This 

research has chosen the busiest shift (the daytime shift) because it is obvious that if this 

research can solve the problem with more data, then it is easily possible to solve problems 

with less data in the same way. In this problem, each route starts from the vehicle parking 

location (which is the drivers’ residence and is called ‘start node’). After serving a number of 

demand nodes (bus stops), finally the vehicle has to go to a specific destination (power plant). 

In addition, the vehicle can be used to serve other passengers out of the plant so an open path 

is created and there would be no closed loops. 

Each bus stop is serviced by only one vehicle. The transportation company has various 

types of vehicles, including minibuses, midibuses, and buses, with each having a different 
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capacity, cost, and start node; therefore, the vehicles are assumed heterogeneous. The choice 

of a vehicle for each route leads to the selection of a driver and, subsequently, determining a 

start node and a passenger transporting capacity on that route. The reason is that each driver 

drives a particular vehicle that is assigned to him in advance and lives in his certain residence 

that is the same place as the candidate for the start node. There is not just one parking lot 

(depot) for all vehicles. Therefore, by selecting one of the three variables of the start node, 

vehicle, or driver, the other two variables, along with the route capacity, are chosen and 

compelled. To apply the distance between a start node and first demand node (bus stop), it is 

necessary to consider the above condition in the optimizing model; therefore, it is required 

that one define a new LRP constraint that has not been seen in previous related articles. 

The reason that the solution is divided into two phases is a difference in the nature of their 

objective functions. Moreover, this can simplify solving the model. In the bus stop location 

problem, the objective is to reduce the passengers’ walking distances, but in the second phase, 

the two objectives of reducing costs and the longest travel time are considered. Due to its 

importance, the objective of reducing walking distances cannot be sacrificed for the objective 

of reducing costs; Therefore, modeling the problem is suggested in two independent phases. 

The first phase has the nature of an LA problem, and the second phase has the nature of an 

LRP with the time window problem. The output of the first phase provides the input 

parameter for the second phase. 

If we consider a small number of bus stops in the city, many personnel have to walk a long 

distance to reach the nearest bus stop certainly. On the other hand, if we consider a large 

number of bus stops to make it possible for staff to reach bus stops by walking a short 

distance, another problem is generated. That is, bus stops will mostly be single player, so a 

vehicle has to meet more number of bus stops along its route to reach its full capacity (to fill 

vehicles seats). In addition, the first passenger’s travel time will be greatly increased. 

Therefore, there are some agreements that the walking distances for any passenger do not 

have to be more than 700 meters and the distance between two built bus stops do not have to 

be less than 200 meters.  

This paper estimates a travel time for each arc based on the length of the arc and its traffic 

conditions. Traffic conditions are assumed fixed for each arc, separately and differently from 

other arcs. Traffic conditions are applied to the problem by a traffic factor for each arc based 

on its traffic conditions to estimate arc travel time. By multiplying the traffic factor by the arc 

length (km), the estimated arc travel time is gained, and by adding the arc travel times on a 

route to the staff riding time, the route travel time is obtained. 

In the case of lower-capacity vehicles, the system’s agility increases and the travel time of 

each person decreases, but the cost of the system increases. However, by choosing larger 

vehicles such as a bus, the condition is reversed. If the capacity of the vehicle is high, the 

vehicle must pass from more bus stops and pick up more passengers in order to reach its full 

capacity, which causes a longer travel time for passengers who have been picked up at the first 

bus stop, whereas those who are picked up at the last bus stop experience shorter travel time. 

Since the present problem (the second model) seeks to reduce costs and the travel time of 

those who have the longest ones, the model has two objectives for minimizing transportation 

costs, including a) fixed costs for each vehicle unit and variable costs for a survey of every 

kilometer traveled by each vehicle, and b) minimizing the maximum travel time for each 

person to respect the fairness of the personnel.  

We make the following assumptions on the problem: 

1. The problem is defined through a graph network whose nodes include demand nodes, 

facility locations including start nodes and bus stops, and the destination node (the 

power plant) while nodes are connected by a set of access roads. 
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2. Demands are deterministic and all of them should be satisfied. 

3. Each demand node is served just by one vehicle. 

4. There are a number of candidate parking locations of vehicles, some of which should be 

established to apply their corresponding vehicles. In addition, there are several 

candidate bus stops, some of which should be chosen to establish and service staff. 

Therefore, there are two location problems. 

5. All of the routes start from parking location of vehicles (start nodes), then selected 

vehicles service the demand nodes by passing them, and finally vehicles finish the 

routes by arriving at the destination node. Thus, each vehicle forms an open route. 

6. Each facility is capacitated, as each bus stop is limited to the maximum vehicle 

capacity. 

7. The vehicles are heterogeneous, with different capacity, different fixed cost on 

applying, and different variable cost on passing each km of access roads. 

8. The duration of passing each km of a road is different from other roads due to its road 

width, traffic congestion, number of red lights on the road, etc.  

9. Picking up the staff at the bus stops takes time based on their number. 

10. The solution and the plan that is obtained from running the suggested model are 

always valid unless the major parameters such as the residence of staff or available 

vehicles change. Therefore, if the parameters do not change along the year, running the 

model only once is enough and running it again is not needed. 

 

3. Mathematical Formulation 

 

This section presents the formulation of the mentioned problems. 

 

3.1. Formulation of the First Model 

 

3.1.1. Sets: 

P: a set of all the residential locations of the personnel  

N: a set of all nodes, which are potential candidate bus stops  

Subscripts: 

i: residential locations index (𝑖 ∈ 𝑃) 

j , j2: candidate bus stops index (𝑗, 𝑗2 ∈ 𝑁) 

 

3.1.2. Parameters: 

𝑞𝑖:  The amount of demand at node i  

𝑑𝑖𝑗: The distance between residential locations i and bus stop j  

𝑑𝑗𝑗2
: The distance between candidate bus stops 𝑗 and 𝑗2  

𝐶𝑚𝑎𝑥: The capacity of bus stops that is equal to the capacity of the larger vehicle 

𝑙𝑚𝑎𝑥: The maximum allowed distance between residential locations and allocated bus stops 

 

3.1.3. Decision Variable: 

𝑋𝑖𝑗: Binary variables that set the assignment of personnel i to the selected bus stop in node j 

𝑌𝑗: Binary variable for the existence of a stop in a node j 

Z: Objective function variable that refers to the total personnel walking distance 
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3.1.4. Mathematical Formulation of the First Model: 
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Equation (1) is an objective function that aims to minimize total personnel walking 

distances. Constraint (2) guarantees that each demand node i is assigned to only one bus stop 

j. It also guarantees that all the personnel who live in the neighborhood are assigned to the 

same bus stop. Constraint (3) ensures that maximum walking distance for each personnel is 

less than 𝑙𝑚𝑎𝑥(=700 meters). Constraint (4) guarantees that the number of personnel that are 

allocated to each bus stop j is less than the capacity of the largest vehicles (𝐶𝑚𝑎𝑥). It also 

guarantees that each personnel can only be assigned to a bus stop that exists. Constraint (5) 

ensures that there are no two bus stops less than 200 meters apart. Constraints (6) and (7) 

define the domain of decision variables. 

 

3.2. Formulation of the Second Model 

 

3.2.1. Sets: 

N: Set of all nodes, which are selected bus stops in the first model (𝑁 = {1,2, … , 𝑛}) 

M: Set of the vehicles start nodes, which include the location of vehicle parking at nights, too 

(𝑀 = {1,2, … , 𝑚}) 

K: Set of vehicles (𝐾 = 1,2, … , 𝑚})      Note: there is one to one correspondence between set 

M and set K 

𝑆 = {𝑁 ∪ 𝑀} 

𝑂 = {0} , 0 denotes the power plant location that is the destination node of all the vehicles; in 

fact, all routes must be finished at 0 node. 

𝐺 = {𝑁 ∪ 𝑂} 

𝑄 = {𝑁 ∪ 𝑀 ∪ 𝑂} 

 

3.2.2. Parameters: 

𝑐𝑣𝑘: The cost of using the vehicle k  

𝑐𝑑𝑘: Traveling cost of vehicle k per km  

𝑑𝑖𝑗: Distance between node i and node j  

𝑡𝑖𝑗: Average time for passing per kilometer between nodes i and j (traffic factor) 

𝑞𝑗: Number of personnel that are assigned to the bus stop j (is presented in Table 1) 

𝑐𝑘: The capacity of the vehicle k  

𝑡: Stop time of vehicle for one passenger to ride 

𝑀: A large number 

𝑒𝑡0: Earliest arrival time to the power plant (the destination node), which is 7:25 for this problem  

𝑙𝑡0: Latest arrival time to the power plant, which is 7.28 for this problem  
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3.2.3. Decision Variables: 

𝑋𝑖𝑗𝑘: a binary variable that is defined as 1 if the vehicle k travels from i to j and serves both 

bus stops; it is 0 otherwise. 

𝑈𝑘: A binary variables that is defined as 1 if the vehicle k is selected; it is 0 otherwise. 

𝐻𝑗𝑘: Departure time of the vehicle k from node j 

𝑍: The objective function variable of the total transportation cost 

𝑌: The objective function variable of the longest travel time for all personnel 

 

3.2.4. Mathematical Formulation of the Second Model: 
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Equation (8) is the first objective function in order to minimize total transportation 

operational costs of the system, including fixed cost for the use of any vehicle and variable 

cost for traveling per kilometer. Equation (9) is the second objective function in order to 

minimize the longest travel time. Constraint (10) explains variable Y in the equation (9) to 

form the second objective. Constraint (11) guarantees that each bus stop is serviced only by 
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one vehicle. Constraint (12) ensures that the passengers are assigned to the selected vehicle up 

to its maximum capacity. Constraint (13) stipulates that every node that is entered by the 

vehicle should be left (the continuity of flow at the intermediate bus stops). Constraint (14) 

guarantees that each vehicle only and only travels once from the start node (set M) to the 

other bus stops. Constraint (15) expresses that the vehicles are forbidden to move from a node 

to a start node (set M). Constraint (16) ensures that each selected vehicle only and only travels 

once from a node to the destination node (power plant). Constraint (17) states that it is not 

allowed to have any travel from the destination to other nodes. Constraint (18) guarantees that 

each vehicle can start traveling only from its corresponding bus stop in the starting. Constraint 

(19) guarantees that each bus stop reaches the destination at the end of its route. Constraint 

(20) determines the departure time at every bus stop. Constraint (21) ensures that the vehicles 

do not arrive earlier than 𝑒𝑡0. Constraint (22) ensures that the vehicles are not arrived later 

than 𝑙𝑡0. Constraints (20), (21), and (22) apply time window to the model. Constraints (23), 

(24), and (25) define the domain of decision variables. 

  

4. The Proposed Multi-Objective Solution Method 

 

In order to solve the proposed multi-objective model, ε-constraint method is utilized. In this 

section, first the ordinary and augmented ε-constraint techniques are briefly presented in the 

next two subsections.  

 

4.1. Ordinary ε-Constraint Method 

 

Esmaili et al. (2011) illustrated that the ε-constraint is a method for solving multi-objective 

function problems with P objective functions in which  𝑓𝑖(𝑥) , (𝑖 = 1,2, … , 𝑃), where 𝑥 is a 

vector of decision variables and 𝑥 ∈ 𝑆 while S is a feasible solution space that is formed by 

main problem’s constraints. In order to solve a multi-objective problem by ε-constraint 

method, it is necessary to change the structure of the problem. Thus, the main objective 

function of the problem is considered as the only objective function of the problem, and the 

rest of the objective functions are added as new constraints to the main model, and probably 

the feasible solution space (S) is smaller than before. To simplify, it is assumed in 

descriptions that all of the objective functions are for maximization. Therefore, the primary 

objective functions in the main model Equations are replaced with (26) and (27). 

 1Max  f x  (26) 

   2i isubject t o :  f x e            i , ,P ,       x S     (27) 

The Pareto solutions are available by variations on the right hand side of the newly added 

constraints (𝑒2, … , 𝑒𝑝). Thus, the variation ranges for P-1 objective functions are required. 

These ranges usually can be obtained from a payoff table. The payoff table shows values for 

every objective function in the individual optimizations. Individual optimization means 

solving the problem at least P-1 times considering only one of the objective functions and 

calculating another objective function values on the basis of the obtained decision variable 

values. Minimum and maximum values for every objective function in the payoff table are 

shown by 𝑓𝑖
𝑚𝑎𝑥 and 𝑓𝑖

𝑚𝑖𝑛 , thus variation ranges for 𝑖𝑡ℎ objective function is 𝑟𝑖 = 𝑓𝑖
𝑚𝑎𝑥 −

𝑓𝑖
𝑚𝑖𝑛. After finding variation ranges for each objective function (𝑒2, … , 𝑒𝑝), the range 𝑟𝑖 is 

divided into 𝑞𝑖 equal intervals. Then, 𝑒𝑖 in (27) is set to 𝑞𝑖 + 1 grid points as equation (28): 

0 1k max
i i i i ie f k r / q           k , , ,q      (28) 

Where 𝑘 stands for the number of the grid points. Thus the main multi-objective function is 

changed to ∑ (𝑞𝑖 + 1)
𝑝
𝑖=2  number of single objective sub-problems, where feasible solution 
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space for every sub-problem is S while it is limited by new added constraints for 𝑓2, … , 𝑓𝑝. 

Every composed sub-problem might have an infeasible space because of the new constraint 

effects on the S or maybe because the results of solving them presents a candidate solution 

that might be a Pareto solution for the primary multi-objective problem. Finally, decision 

makers are engaged in selecting the most preferred solution out of the obtained Pareto optimal 

solutions. 

 

4.2. The Augmented ε-Constraint Method 

 

This paper applies augmented ε-constraint method that was introduced by Mavrotas (2009). 

As previous research illustrated, it is necessary to have the range of variations for every 

objective function (at least for the number of P-1 objective functions) for the application of 

the augmented ε-constraint method. While the best value for any individual optimization is 

readily available, it is not easy to access the worst value (nadir value). In the ordinary ε-

constraint method, the ranges are obtained from the payoff table, and the minimum value of 

every objective function in the corresponding column of payoff table is approximated as the 

worst value. However, it is necessary to be sure that the final solutions, which are obtained 

from the problem solution process, are Pareto solutions. However, there is not such certainty 

in the ordinary ε-constraint method. According to ordinary ε-constraint method, the first 

payoff table is formed using conventional LP optimizer at individual optimizations, while the 

obtained optimal solutions presented in this payoff table may be dominated by each other. 

However, the solutions are presented in the payoff table while there may be another solution 

that can dominate them. This way, the search will be finished and results will be presented as 

solutions.  

In order to eliminate this uncertainty, Mavrotas (2009) uses the lexicographic optimization 

for every objective function to compose the payoff table with only Pareto optimal solutions. A 

simple remedy to achieve this certainty is to define the reservation values for objective 

functions. The reservation value is a lower bound for the objective function values (or upper 

bound for minimization objective functions), worse than which is not permitted. 

Lexicographic optimization method obtains a solution that optimizes the main objective 

function while other solutions could not dominate it; thus, it is a Pareto solution. The purpose 

of the lexicographic optimization is to find the optimum solution for the first objective 

function, and, at the same time, the best solution for the second objective function, and so on. 

Practically, lexicographic optimization implements as what follows. 

Mavrotas (2009) optimizes the main (first) objective function (max 𝑓1 = 𝑍1
∗),  then adds 

𝑓1 = 𝑍1
∗ as a new constraint to the S in order to make sure the first objective function remains 

optimal during the solution process. Next, he optimizes the second objective function. 

Subsequently, the third objective function optimizes the subject to 𝑓1 = 𝑍1
∗, 𝑓2 = 𝑍2

∗ and S. 

The next objective function becomes optimal with respect to previous objective function 

optimizations until objective functions are finished. With the solutions that are obtained from 

lexicographic optimization, the payoff table is composed and the varied ranges are divided 

into equal intervals like the ordinary ε-constraint method, several grid points are used as 

values for 𝑒2, … , 𝑒𝑝, and sub problems are formed. The comparison results show that the 

payoff table made from the lexicographic optimization method has more meaningful grid 

points than the ones obtained from the ordinary payoff table. For extra description about this, 

see Mavrotas (2009).  
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5. Computational Results 

Exact solution method and branch and cut algorithm were chosen for solving this MOMIP. 

Programming models have been solved using GAMS 24.1.2 modeling language. This section 

presents experimental results for both models. 

 

5.1. First Phase Solution 

 

To solve the mathematical formulation of the first model, it was coded in the GAMS and 

parameters were placed in it. After running the GAMS, a set of results were gained, which are 

shown in Table 1. From the 124 variables 𝑌𝑗, only 22 of them have been numbered as 1 and 

the rest of them have been numbered as zero; thus, from the 124 candidate bus stops, only 22 

of them are selected to be established. The first row in Table 1 is the list of selected bus stops 

and the second row presents demand nodes (𝑖 ∈ 𝑃) that are assigned to each selected bus 

stop. The last row presents total demand of each bus stop. The results in the objective function 

value show 17447 meters, which is the total walking distance for all of the personnel.  

Table 1. Chosen Bus Stops and Assigned Demand Nodes for Each Chosen Bus Stop 
j j5 j8 j13 j20 j28 j30 j36 j41 j59 j63 j71 

i i3 

i5 

i8 i32 

i39 i42 i46 

i51 

i19 i26 i53 

i6 
i40 

i43 i47 i20 i27 i57 
i41 

qi 1 2 1 1 3 2 2 1 2 2 4 

            j j73 j79 j96 j97 j104 j106 j110 j112 j116 j122 j123 

i 

i54 

i60 

i91 i92 i97 i101 i67 i69 i81 i75 i74 

i56 i94 i95 i102 i103 
i68 

i73 i82 i76 i77 
i70 

qi 2 28 3 2 2 2 25 3 2 3 2 

 

5.2. Second Phase Solution 

 

Solving the second model because of its two objectives and the use of the ε-constraint method 

includes some stages, as follows.   

Stage 1: The objective of the first stage is finding only minimum cost of the transportation 

system; thus, the second objective is ignored and the model is considered as a single objective 

problem. Selected vehicles, considered routes and objective function values for optimized 

solutions for stages 1 to 4 are presented in Table 2.  

Stage 2: The purpose of the second stage is to improve the second objective function value 

(longest travel time) while the first objective function value is fixed to the same value that is 

achieved from the first stage. Thus, the first objective value of the previous stage (302.99) is 

added to the original model 2 as a new constraint and the first objective function is eliminated 

from the main model. Therefore, the second objective function is applied to the model as the 

only objective function.  

Stage 3: In the third stage, the first objective function is ignored and only the second 

objective function is applied as a single objective problem (as opposed to the first stage) to the 

original model 2.  

Stage 4: The goal of the fourth stage is to improve the first objective function value, while 

the value of the second objective function is assumed to be a constant number obtained before 

the third stage of the algorithm. To find these solutions, the second objective function is 

eliminated, but 47 minutes for the second objective function value is added as a new 
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constraint to the original model 2. Thus, the fourth stage solution dominates the third stage 

solution.  

Table 2. Routes, Used Vehicles, and Objective Function Values in the Solution of Stages 1 to 4 From 

ε-Constraint Method 
Routes Vehicles 

F
ir

st
 s

ta
g

e

 

Z(Cost)=302.99    , Z(Time)=111 

M1 - j96 - j97 - j79 - j104 - j112 – 0 V1 

M3 - j63 - j5 - j8 - j13 - j20 - j30 - j28 - j36 - j41 - j71 - j73 - j106 - j116 - j123 - j122 – 0 V3 

M5 - j59 - j110 – 0 V5 

Z(Cost)=302.99    , Z(Time)=111 

S
ec

o
n

d
 s

ta
g

e

 
M1 - j96 - j97 - j79 - j104 - j112 – 0 V1 

M3 - j63 - j5 - j8 - j13 - j20 - j30 - j28 - j36 - j41 - j71 - j73 - j106 - j116 - j123 - j122 – 0 V3 

M5 - j59 - j110 – 0 V5 

Z(Cost)=580.635    , Z(Time)=47 

th
ir

d
 s

ta
g

e

 

M1 - j96 - j97 – j110 - j112- j116 – 0 V1 

M2 – j79 - j71 – 0 V2 

M3 – j63 – j30 – j28- 0 V3 

M5 - j36 - j41 – 0 V5 

M7- j5- j8 – j13 – j20 – 0 V7 

M9 – j59 – j122 – j123 – 0 V9 

M10 – j73 – j106 – j104 – 0 V10 

Z(Cost)=562.718    , Z(Time)=47 

F
o

u
rt

h
 s

ta
g

e

 

M1 - j96 - j97 – j116 - j122 - 0 V1 

M2 – j79 – j106-j104 – 0 V2 

M3 – j63 – j110- 0 V3 

M6 - j30 – j28 – j36 - 0 V6 

M7- j5- j8 – j13 – j20 - 0 V7 

M9 – j59 – j112 – j123 - 0 V9 

M10 – j71 – j41 – j73 - 0 V10 

 

Stage 5: Now the payoff table can be formed with the solutions obtained from the last four 

stages. Table 3 presents the problem payoff table. A range is created for the longest travel 

time with a minimum of 47 minutes from the third stage and a maximum of 111 minutes from 

the second stage; [47,111]. The range is then divided into 6 intervals and each distance sets an 

upper bound for the new added constraint in stage 6, which creates a new problem.  

Table 3. Payoff Table of Objective Functions of Model 2 
Y(Cost) Z(Time) 

303 111 

562.72 47 

 

Stage 6: To achieve Pareto solutions, the second objective function is removed and only 

the first objective function is applied. In addition, a new constraint is added to the original 

model 2 to limit the value of the second objective function to the specified intervals. 

Therefore, problems arise for each interval, and by solving these 6 problems, 6 Pareto solution 

are at hand. Table 4 presents the 6 obtained Pareto solutions. 
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Table 4. Routes, Applied Vehicles, and the Objective Function Values for Each Pareto Solution 
F

ir
st

 P
ar

et
o

 s
o

lu
ti

o
n

 

(9
8

.2
0

 ,
 1

1
1

.0
0

0
] Vehicles Routes 

Z(Cost)=302.99    , Z(Time)=111 

V1 M1 - j96 - j97 - j79 - j104 - j112 - 0 

V3 M3 - j63 - j5 - j8 - j13 - j20 - j30 - j28 - j36 - j41 - j71 - j73 - j106 - j116 - j123 - j122 - 0 

V5 M5 - j59 - j110 - 0 

S
ec

o
n

d
 P

ar
et

o
 

so
lu

ti
o

n
 

(8
5

.4
0

,9
8

.2
0

] Z(Cost)=305.910    , Z(Time)=95 

V2 M2 - j79 - j112 - 0 

V5 M5 – j73 – j110 - 0 

V9 M9 – j59 – j41 – j96 – j97 – j106 – j104 – j116 – j123 – j122 - 0 

V10 M10- j71 – j20 – j13 – j8 – j5 – j63 – j30 – j28 – j36 - 0 

th
ir

d
 P

ar
et

o
 

so
lu

ti
o

n
 

(7
2

.6
0

,8
5

.4
0

] 

Z(Cost)=306.479    , Z(Time)=78 

V3 M3 – j63 – j79- 0 

V5 M5 – j73 – j110 - 0 

V7 M7 – j5 – j8 – j13 – j20 – j30 – j28 – j36 – j41 – j96 – j97 – j112- 0 

V10 M10- j59 – j71 – j106 – j104 – j116 – j123 – j122 - 0 

F
o

u
rt

h
 P

ar
et

o
 

so
lu

ti
o

n
 

(8
9

.8
0

,7
2

.6
0

] Z(Cost)=313    , Z(Time)=72 

V2 M2 – j79 – j73 – j122- 0 

V3 M3 – j63 – j20 – j36 – j110 - 0 

V9 M9 – j59 – j112 – j104 – j106 – j97 – j96 – j116 – j123- 0 

V10 M10- j13 – j8 – j5 – j30 – j28 – j41 – j71 - 0 

F
if

th
 P

ar
et

o
 s

o
lu

ti
o

n
 

(4
7

.0
0

,5
9

.8
0

] 

Z(Cost)=375.127    , Z(Time)=59 

V2 M2 – j79 - 0 

V3 M3 – j63 – j41 – j73 – j110 - 0 

V7 M7 – j5 – j8 – j13 – j20 – j30 – j28 – j36- 0 

V9 M9- j59 – j112 – j116 – j123 – j122 - 0 

V10 M10- j71 – j96 – j97 – j106 – j104 - 0 

S
ix

th
 P

ar
et

o
 s

o
lu

ti
o

n
 

Z
(T

im
e)

=
4

7
 

Z(Cost)=562.718    , Z(Time)=47 

V1 M1 – j96 – j97 – j116 –j122 - 0 

V2 M2 – j79 – j106 – j104 - 0 

V3 M3 – j63 – j110- 0 

V6 M6- j30 – j28 – j36 - 0 

V7 M7- j5 – j8 – j13 – j20 - 0 

V9 M9 – j59 – j112 – j123 - 0 

V10 M10- j71 – j41- j73 - 0 
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Figure 3. Nodes and Five Routes for the Fifth Pareto Solution 

There are six different Pareto solutions available that vary in the total cost of transportation 

system, the longest travel time, the number of used vehicles, routes and the start nodes. 

Considering that each Pareto solution does not dominate other solutions and every solution is 

better than other Pareto solutions in only one objective, selecting one of the six Pareto 

solutions is the responsibility of the company’s decision makers to choose based on the 

company’s condition. Figure 3 shows the routes and the bus stops for the fifth Pareto solution. 

The figure shows the start nodes with green signs, the bus stops with yellow signs, five routes 

of the fifth Pareto solution with different colors, route of the vehicle V2 in pink, and in the 

following cases, for V3 in yellow, for V7 in Green, for V9 in orange, and for V10 in blue. 

The obtained departure time of each vehicle at all of the nodes on its route, for the fifth 

Pareto solution, is presented in Table 5. 

Table 5. Vehicle Departure Time for Each Node for the Fifth Pareto Solution 

V2 
Nodes on route M2 j79 0             

departure time 06:43 06:58 07:25             

V3 
Nodes on route M3 j63 j41 j73 j110 0       

departure time 06:20 06:22 06:38 6:44 7:03 7:25       

V7 
Nodes on route M7 j5 j8 j13 j20 j30 j28 j36 0 

departure time 06:24 06:27 06:30 6:33 6:39 6:44 6:47 6:55 7:25 

V9 
Nodes on route M9 j59 j112 j116 j123 j122 0     

departure time 06:24 06:30 06:45 6:54 7:03 7:06 7:25     

V10 
Nodes on route M10 j71 j96 j97 j106 j104 0     

departure time 06:22 06:32 06:49 6:51 6:58 7:02 7:25     

 
In order to make a comparison between the experimental method of the transportation 

company (experimental plan), which was performed by the company before the optimization, 

and six Pareto solutions, it is necessary to have data of routes as well as the objective values 

for the experimental plan. In the experimental plan, four vehicles are applied to serve staff 

through the mentioned routes at Table 6. In the experimental plan, the cost objective value is 

376.2 monetary units and the longest travel time objective is 90 minutes. It is clear that in the 

fourth Pareto solution in comparison with the experimental plan, which applies the same 

number of vehicles, cost variable is decreased by 63 monetary units and the longest travel 

time is decreased by 18 minutes; thus, both decision variables are improved. This means that 

the fourth Pareto solution dominates the experimental plan completely. It is necessary to 
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consider that the mentioned improvement is only for a one-shot implementation. We know 

transportation is implemented twice a day and 250 workdays per year. 

Table 6. Routes, Used Vehicles, and Objective Values in Experimental Transportation Plan Performed 

by the Company 

E
x
p

er
im

en
ta

l 

m
et

h
o

d
 o

f 

tr
an

sp
o

rt
at

io
n

 

co
m

p
an

y
 

Vehicles Routes 

Cost=376.245    , Time =90 

V1 M1 – j59 – j79 - 0 

V2 M2 – j110 – j112 - 0 

V3 M3 – j63 – j5 – j8 – j13 – j20 – j28 – j30 – j36 –j41 – j71 – j73- 0 

V9 M9- j96 – j97 – j104– j106 – j116 – j123 – j122 - 0 

 

The blue points on Figure 4 are the six Pareto solutions, the blue curve that is formed by 

connecting the Pareto solution points presents the edge of the solution space, and the red point 

presents the experimental transportation plan situation rather than the Pareto solutions. Figure 

4 shows the objective function values that each of the six Pareto solutions are better in (one or 

both of objectives) rather than the experimental transportation plan situation. Thus, it is upon 

decision makers to choose the best one out of the six Pareto solutions. 

 
Figure 4. Objective Function Values Curve for Six Pareto Solutions and the Experimental 

Transportation Plan 

6. Conclusion 

 

6.1. Percentage of Improvement  

 

In this paper a mathematical model is presented for solving the bus stop location problem 

with minimizing the total personnel walking distances objective and another model for 

routing vehicles, choosing vehicles, locating start nodes, and scheduling routes in order to 

minimize two objectives (cost and time), and minimizing the longest travel time for personnel 

in order to be fair about their travel time. The branch and cut algorithm is used for solving the 

problems, and the augmented ε-constraint method is applied to solve the multi-objective 

problem. The gained numerical result shows improvement in the objective function values. 

Choosing some of the Pareto solutions can improve both objective function values. The 

percentage of improvement in objective function values for each Pareto solution, compared 

with the experimental transportation plan situation, is presented in Table 7. 
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Table 7. Percentage of Improvement in Objective Function Values  

 
Percentage  of improvement of the 

cost objective 

Percentage  of improvement of the 

time objective 

1st Pareto solution 19.47% -23.33% 

2nd Pareto solution 18.69% -5.56% 

3th Pareto solution 18.54% 13.33% 

4th Pareto solution 16.81% 20.00% 

5th Pareto solution 0.30% 34.44% 

6th Pareto solution -49.56% 47.78% 

 

6.2. Managerial Insight 

 

The transportation system optimization results in an improvement of the functional indexes of 

the transportation system. Some advantages of the suggested model, for employers, 

transportation companies, and passengers are presented in the following lines: 

 Decreasing the total traveled distances, 

 Choosing appropriate vehicles for each route and optimizing the use from capacities, 

 Decreasing transportation system costs and providing interests for the employer and 

transportation company, 

 Decreasing air pollution and traffic congestion, 

 Improving system efficiency, 

 Preparing an accurate schedule, 

 Optimizing the bus stop locations and decreasing the personnel walking distances, 

 Minimizing the longest travel time and observing the fairness between personnel in 

terms of travel time, and 

 Satisfying all the beneficiaries of the transportation system and even city inhabitants. 

This paper suggests that policy makers, researchers and practitioners use this method for 

similar situations, in which the number of nodes is not too many and the running of the model 

is not frequented hourly or daily. In the similar problems that a model runs for one time and is 

used for many implementations, the running time of the model is not really important, 

whereas achieving the optimal solution is essential because a small waste of money repeats 

many times and creates a huge waste. Thus, applying the suggested models lead to a virtually 

optimal solution. 

 

6.3. Suggestions for Future Research 

 

LRPs are classified as NP-hard problems, so increasing the number of nodes will increase 

solution time exponentially and may even make the problem unsolvable. Therefore, the 

heuristic and meta-heuristic methods have found many applications. Nevertheless, heuristic 

methods only approach the optimum solution and they do not guarantee achieving the 

absolute optimum solution. It is then possible to conduct much research on exact and heuristic 

solution methodology to find faster and more efficient exact methods. Some suggestions that 

can expand the problem are adding stochastic assumption to personnel demands, solving this 

problem with the heuristic methods, adding personnel from other shifts to the problem and 

adding the possibility to apply one vehicle for serving several shifts, adding assumption of 

serving several factories concurrently in order to decrease costs (possibility of picking up 

personnel from several companies by a vehicle), and combining LRPs with the concept of 

data analyses and machine learning (a sample of using the machine learning is presented by 

Najafi Moghaddam Gilani et al., 2021). 
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