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1. Introduction  
To create a portfolio, investors contemplate many objects such as minimization of the risk and return 

maximization. The classic model of portfolio optimization, called Markowitz mean-variance model, 

considers these objectives (Markowitz, 1952). In this model, it is supposed that the return has a normal 

distribution while it often is not true in practice. Also, in a real model of investment, different criteria 

other than risk and return are considered by decision-makers. Pysarenko, Alexeev & Tapon (2019) 

integrated Markowitz model and a fundamental approach to construct a novel portfolio. They found that 

a constructed portfolio has better diversification than that of fundamental analysis while it has a better 

risk-adjusted return than the classic Markowitz model. Safa and Panahian (2018) introduced the price-to 

earnings per share ratio as a measure and criteria for investors and contributors to the stock exchange to 

make more appropriate decisions. To employ this tool, decision-makers needed to estimate and predict 

the price and obtain the maximum return on investment. This issue motivated them to utilize the 

Harmony Search algorithm and neural network to forecast the stocks’ prices and get the best return. 

They studied the stocks of 87 companies at Tehran Stock Exchange over 10 years between 2006 and 

2015. They concluded that combining neural network with new approaches and algorithms has more 

accuracy than other forecasting techniques. To estimate the stock market, Azizi et al. (2021) investigated 

the effect of fundamental data such as stock prices. They gathered both stock indexes from Stock 

Exchange and published news in the under-studied period. The main purpose was the examination of the 

impact of news headlines obtained from an economic news website on the stock index. In their study, the 

news ranged from “very negative” to “very positive”.  The authors utilized logistic regression to assess 

the connection between the stock index and news. The findings show that the published news affects the 

stock index and can have a positive or negative semantic burden. Wang (2011) applied data mining 

techniques to make a portfolio based on the stock trading data and financial data consisting of earnings 

per share, net asset value per share, total assets turnover ratio, principal businesses growth rate, and 

liquidity ratio. Dinandra, Hertono, and Handari (2019) examined various portfolio strategies using 

clustering methods in which seven financial ratios were investigated including earnings per share, price 

earning ratio, price/earning growth, return of equity, debt equity ratio, current ratio, and profit margin. 

Goudarzi, Jafari, and Afsar (2017) developed a portfolio in which, in addition to the investors’ behavior, 

liquidity, and current ratios are also taken into account. 

In the context of stock, there are two principal aspects to seeking various criteria. One technical 

analysis and the other fundamental one. In technical analysis, investment opportunities are assessed 

using statistical trends like price movement and volume. Unlike this method, the fundamental analysis 

measures the security’s inherent value through the financial and economic statements of related 

companies and industries. In other words, this approach enables investors to decide based on historical 

and present market data. One can consider an alternative approach to portfolio selection. In this 

alternative setup, a decision-maker chooses stocks for the portfolio according to their attractiveness, 

measured by companies’ financial ratios. This allows for the addition of a third dimension for the 

analysis of portfolio construction. For this purpose, MAI can be used to make it possible to create a 

portfolio regarding the companies’ fundamental strengths and the investment’s long-term character. In 

this paper, it is integrated with 𝛽 as the systematic risk indicator to include market conditions in the 

portfolio construction.  

One of the principal problems with portfolio selection is the uncertainty of some parameters such 

as future returns. If the problem parameters take values other than nominal ones, some constraints may 

not be followed and the optimal solution obtained using nominal data, be no longer optimal or even 

feasible. Robust optimization is one of the effective methods to deal with data uncertainty. It supposes 

that the uncertain data lie in an uncertainty set. Under parameter uncertainty, Malliet, Tokpavi & 

Vaucher (2015) suggested a robust approach variance of the portfolio be minimized. The results 

indicated that a robust portfolio leads to a higher Sharpe ratio and lower variance. To suitable portfolio 

selection, Xidonas et al. (2017) applied a robust concept under scenario uncertainty to minimize the 

variance of the portfolio. To form a more robust portfolio, worst-case optimization was implemented 

by Kim et al. (2014 b). The results proved that the proposed approach has more robustness than 

Markowitz’s classic model. For a robust investment, Kim et al. (2015) focused on the worst-case 

robust optimization. Ghaoui, Oks, and Oustry (2003) decreased the extreme portfolio sensitivity to 

errors in data by considering the worst-case VaR and entropy in a robust portfolio optimization 
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problem in which the moments of return distribution belong to a predefined set. Erdogan, Goldfarb, 

and Iyengar (2006) examined portfolio construction as a second-order cone programming to select an 

active portfolio. In their study, Ben-Tal, Margalit, and Nemirovski (2000) investigated a severe 

uncertainty in the multi-period asset allocation problem. Bertsimas and Pachamanova (2008) 

compared the performance of their multi-period portfolio problem with a single one in which the 

return of stocks was considered uncertain. To overcome the uncertainty, the robust optimization 

approach was employed. Hanafizadeh and Seyfi (2006) examined the norm bodies of various 

uncertainty sets and formulated their robust counterparts. They employed the utility function of 

decision maker and uncertain return stocks to adjust a robust portfolio selection.  

Despite extensive studies in the aforementioned fields, so far no attention has been paid to 

the uncertainty of MAI. This is important because ignoring the possibility of changing a company's 

financial ratios over time diverts investors from the main goal of optimal portfolio construction. The 

underlying key-contribution of this study is related to the integration of MAI and 𝛽 to 

construct a portfolio based on the companies’ fundamental ratios and attractiveness of 

investments’ long-term measures under uncertainty conditions. To overcome the uncertainty, 

a robust optimization approach is used to create a robust portfolio. 

The rest of this study has been structured as follows: section 2 introduces the definitions of 

relevant concepts and models. The proposed approach is given in section 3. A numerical 

example is surveyed in section 4. Finally, concluding remarks are presented in section 5. 

2. Preliminaries  
This section briefly reviews the systematic and non-systematic risk, MAI, and RO models as 

preliminaries.  

2.1 Systematic and Non-systematic Risk 

The portfolio total risk can be divided into non-systematic and systematic risk: 

Total risk = non-systematic risk + systematic risk 

Non-systematic risk is related to a specific industry or firm which can be eliminated using portfolio 

diversification. As systematic risk represents the inherent risk of market, it is hard for an investor to 

eliminate or reduce that. To assess the return of a stock, the single-index model is used. This model 

applied broadly in finance science developed by William Sharpe (1963). It supposes that stock return 

is influenced by only one factor, the market index, and expressed as follows: 

i i i m iR R       (1) 

𝑅𝑖   The stock return 

𝑅𝑚  The market return 

𝛼𝑖    The abnormal return or stock alpha  

𝛽𝑖    Responsiveness to the market return or systematic risk measure 

𝜀𝑖    Residual return 

According to (1), systematic risk, 𝛽𝑖, is computed for each equity as follows: 

( , )

( )

i m
i

m

cov R R

var R
    (2) 

If 𝛽 < 1, the stock is defensive; 𝛽 > 1 defines an offensive stock, and 𝛽 = 1 represents a neutral one 

in which equity systematic risk is equal to the market risk. That is, the stock return varies with the 

reduction or increase of return rate of the market total index.  

The first study in the context of risk control in portfolio optimization was proposed by Zhu, Li, and 

Sun (2010). The issue was addressed within a mean-variance structure that led to a non-convex 

quadratically constrained program. To solve the formulated model, an efficient branch-and-bound 

technique was employed. To assign the systematic risk in the portfolio selection problem, Li et al., (2013) 

addressed a mean-variance problem. The proposed model, also, can be used as a model for controlling 

risk sensitivity in portfolio optimization. The gained model is a non-convex quadratically constrained 
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quadratic program but can be written in a special structure because of its properties related to systematic 

risk. A convergent ranch-and-bound algorithm was implemented under a second-order cone relaxation. 

The components of the non-systematic risk in a natural gas export portfolio were discussed in the research 

of Nowrouzi et al., (2019). These components were identified as the risk of gas dependency of gas 

importing countries and geopolitical risk. A quantitative index aggregate technique based on entropy was 

introduced through suitable sub-indicators. The findings verified that the minimum risk value is obtained 

when there is a meaningful rate of LNG transmission method in the gas export portfolio. 

The Capital Asset Pricing Model directs risk analysis in modern financial problem and beta 

measure can power that. Yuan and Lee (2015) implemented genetic algorithm-Least squares support 

vector regression to predict the systematic risk measure (beta). The aim of employing the Genetic 

algorithm was to select optimal parameters for Least squares support vector regression and the mean 

square forecast error was utilized to assess the fitness. An empirical study using financial data between 

2001 and 2010 concluded that the genetic algorithm-Least squares support vector regression has better 

predicting accuracy than the genetic algorithm-artificial neural network method. Lee et al., (2010; 

1986) proved that beta prediction is affected by both accounting and market information using 

composite concepts. The model based on market information in the simplest condition considers 

stationary beta over time. Their proposed model can be implemented in security analysis and financial 

management to define how accounting information can be employed in beta coefficient prediction. 

Blume (1975) claimed a linear relationship between the future beta coefficient related to stock and its 

historical one.  A linear relationship between the beta coefficient based on historical data and future 

coefficient was supposed by Klemkosky and Martin (1975). They studied the source of predict errors 

of beta coefficients and three adaptive processes introduced in the literature.  

AlMahdi (2015) introduced market risk as the main portfolio’s risk factor. The author examined 

several portfolios by the smart beta strategies. In his study, the smart beta implies portfolio management 

involving cap weight, minimum variance, and economic scale in which these options are integrated and 

constructed beta dynamic portfolios. Inspired by game theory, Shalit (2020) introduced the shapely value 

to quantify the risk factor related to the portfolio. He believed that the beta index is a necessary indicator 

in pricing of risky securities. The main concept in his research was considering the portfolios as 

cooperative games, played through assets to minimize the risk. Utilizing the shapely value, investors can 

calculate the exact contribution of each risky asset to the joint payoff. An empirical study for a portfolio 

involving three stocks examined the sharp value when the risk is minimized regardless of portfolio 

return. His study calculated the stocks’ shapley value and indices for optimal mean-variance portfolios 

utilizing daily returns in the time-period 2016–2019. This results in the risk attributes assigned to 

securities in optimal portfolios. Finally, the smart Shapley values were analyzed and compared to the 

standard beta estimates to determine the ranking of assets concerning the pertinent risk and return. 

2.2 Measure of Attractiveness of Investment (MAI) 

The fundamental analysis has a deep and broad perspective and plays a particular and key role in long-

term investment opportunities. Its basic knowledge helps investors to identify stocks trading at a lower 

or higher price than real value and lay a secure foundation for their investment decisions. Some 

capabilities of the fundamental techniques include predicting future price movement, evaluating 

management, and analyzing the strengths and weaknesses of the company whose stock is considered. 

It deals with some substantial questions such as: is the company experiencing a rising revenue? Does 

the company make an actual profit? In fundamental analysis, the investor is interested in examining 

the economic conditions and environment in which the entity operates, and finally, by exploring its 

development prospects, weakness and strength aspects, and financial health, the investor decides 

whether it is worth investing in its stock or not. In the study of a company’s state, financial ratios 

computed from the financial reports are considered such as liquidity ratios (e.g. current ratio, 

instantaneous ratio), leverage and investment ratios (debt ratio, debt to equity ratio), activity ratios 

(periodicals collection, inventory period of material and goods, current capital turnover, fixed asset 

turnover, total assets turnover), and profitability ratios (net profit margin, operating margin, return on 

assets, return on capital, return on working capital). To exhibit the economic and financial standing of 

a company, a synthetic indicator based on selected ratios can be applied first introduced by Tarczyński 
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(1995). To assess the financial standing of the company, he introduced an indicator entitled the 
taxonomic measure of attractiveness of investment. 

The approach proposed by Tarczyński (1995) was developed. For example, Rutkowska-Ziarko and 

Garsztka (2014) applied semi-variance as a risk indicator instead of variance. To consider the possible 

correlation among financial variables, Rutkowska-Ziarko (2013) employed the Mahalanobis distance. 

Staszak (2017) utilized this measure to construct an experimental portfolio from active companies on 

the Polish stock exchange. He studied the period 2004-2016 and concluded that the results of a 

fundamental portfolio utilized the taxonomic measure of attractiveness of investment outperforms the 

classical Markowitz model. Further studies can be found in (Kliber, 2019; Tarczyński and Łuniewska, 

2005; Tarczyński and Łuniewska, 2018). 

2.3 Robust Optimization 

Uncertainty is an integral part of human life. In many cases, the exact prediction of the parameters and 

factors affecting the problem is not feasible, and at the best, only the estimated ones are available. Thus, 

the provision of methods for considering these uncertainties in solving problems has always been of 

interest to researchers because in many cases, the failure to pay attention to these uncertain factors can 

lead to system heavy costs and in some cases even reduce the value of the solutions provided. 

Given the nature of the data uncertainty, there are various approaches to dealing with them. If 

randomness is the source of data uncertainty, the probability distribution function of the parameters is 

known, stochastic programming is used. The fuzzy optimization approach is used when there is no 

historical data on the desired parameter and therefore no probable function can be attributed to that 

parameter. Robust optimization, a new approach to dealing with uncertainty, seeks to provide a 

solution for the problem to be robust in uncertainty. In this approach, there is no information about 

date distribution, and only the interval of their perturbation is determined. 

Seeyster (1973) presented a linear optimization model that gives the best answer to all input data so 

that any input data can take any amount of the interval. This approach tends to find answers that are too 

conservative. Ben-Tal and Niemerovsky (1998) provided an efficient algorithm based on elliptical sets.  

To minimize the conditional value at risk under uncertainty Quaranta and Zaffaroni (2008) utilized 

a robust optimization approach. They found a linear robust copy of the bi- criteria minimization model 

introduced by Rockafellar and Uryasev. To produce input data, they utilized various methods for 

predicting the expected returns. The proposed model was verified in a portfolio selection example on 

the Italy Stock Exchange.  To maximize the total return of created portfolio, Gregory, Darby-

Dowman, and Mitra (2011) investigated the cost of robustness. They used the polyhedral uncertainty 

set to construct the convex set and formulate the robust counterpart. In the portfolio, the model was 

based on the min-regret approach and the relationship between uncertainty sets and various definitions 

of bounds. Kawas and Thiele (2011) introduced a new approach called Log- robust to manage a 

portfolio with uncertain parameters. This approach does not use any probabilistic assumption and 

integrates the randomness of the continuously compounded rates of return. A two-stage robust model 

introduced by Rahmani (2019) in which return and risk indicators of various industries settle the 

favorite value of an investment in each industry and the exact amount of investment is determined by 

considering systematic and non-systematic risk, the results of the first stage and stocks’ return. To 

overcome the uncertainty in the proposed approach, they implemented a robust model and the goal 

programming was utilized to solve the multi-objective model. Verderame and Floudas (2011) 

investigated the robust models under continuous uncertainty sets (general, uniform, normal) and 

discontinuous uncertainty sets (general, binomial, Poisson). 

Goli et al., (2019a) applied robust optimization and multi-objective invasive weed optimization to 

construct a product portfolio for Pegah Golpayegan Company. The profit margin was considered as 

the uncertain parameter and the results were compared with CPLEX and the genetic algorithm. 

Finally, the superiority of proposed approach was proved. In another study, they introduced a hybrid 

neural network and runner root meta-heuristic algorithm for dairy product industries and proposed two 

robust counterpart formulations to solve the proposed model (Goli et al., 2019b). Moon and Yao 

(2011) proposed a mean absolute deviation model for portfolio optimization under uncertain 

conditions and improving portfolio performance using the control of estimation errors. They examined 

the proposed approach on a real stock market and concluded that their model outperforms a nominal 
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mean absolute deviation one.  Gabrel et al., (2014) reviewed the robust optimization literature since 

2007, gave a representative picture of subjects most interested, and highlighted their contributions in 

this field. New advances in robust portfolio selection in terms of operation research and financial 

aspects were sought by Fabozzi et al. (2010).  They investigated all studies that used variance, mean-

VaR, and mean-CVaR as risk measures as well as Bayesian robust approaches and optimal estimation 

methods.  Goldfarb and Iyengar (2003) explored uncertainty sets can be reformulated in terms of an 

explicit second-order cone program. Also, the authors focused on applications of robust convex 

quadratic cone programs and proved that constructed uncertainty sets can be modeled by classic 

uncertainty sets.  A multi-period portfolio problem in the presence of transaction costs with a linear 

and computationally efficient model was suggested by Bertsimas and Pachamanova (2008). The 

authors proved that the proposed multi-period model outperform the single-period mean-variance one. 

DeMiguel and Nogales (2009) introduced portfolios created by certain robust estimators. The 

suggested portfolios are solved using a single nonlinear program. These portfolios are less sensitive to 

variations in asset-return distribution and outperforms the classic portfolios. 

Bertism and Sim (2004) introduced a different approach to control the level of conservatism. The 

advantage of this method is that it leads to a linear optimization model and is therefore applicable to 

discrete optimization models. In Bertsimas and Sim’s approach, the uncertainty budget is defined as 

constraints’ cardinality or the number of parameters that can fluctuate around their nominal values. 

Ghahtarani and Najafi (2013) solved the portfolio problem utilizing the integration of Bertism and Sim 

approach and goal programming. The results showed that as the price of robustness enhances, the 

conservatism of the solution increases. Also, they considered the decision makers’ ideas in the proposed 

approach. In another work, they proposed a robust mean- absolute deviation approach with uncertain 

parameters based on Bertism and Sim’s robust approach (Ghahtarani and Najafi, 2018). Li, Ding, and 

Floudas (2011) reviewed various uncertainty sets including interval, integration of interval and 

ellipsoidal, integration of interval and polyhedral, integration of interval, ellipsoidal, and polyhedral, 

adjustable box, pure box, and pure polyhedral, and investigated their geometric relationship. The authors 

examined different modes of existing uncertain parameters such as right-hand side, left hand side and, 

etc. a case study related to batch process scheduling and refinery production planning weas addressed.  

The following optimization problem is assumed:  

s.t.

min Tc x

Ax b

l x u



 

  (3) 

Suppose 𝐴 = 𝑎𝑖𝑗 is an uncertain matrix in which each 𝑎𝑖𝑗vary between 𝑎𝑖𝑗 − �̂�𝑖𝑗 and 𝑎𝑖𝑗 + �̂�𝑖𝑗. In 

other words, 𝑎𝑖𝑗𝜖[𝑎𝑖𝑗 − �̂�𝑖𝑗 𝑎𝑖𝑗 + �̂�𝑖𝑗]. Consider the ith constraint of the nominal problem 𝑎𝑖𝑥 ≤ 𝑏𝑖. 

Let 𝐽𝑖 be the set of coefficients 𝑎𝑖𝑗, 𝑗𝜖𝐽𝑖 that are subject to parameter uncertainty; i.e., �̃�𝑖𝑗, 𝑗𝜖𝐽𝑖 takes 

values according to a symmetric distribution with a mean equal to the nminal value 𝑎𝑖𝑗 in the interval 

[𝑎𝑖𝑗 − �̂�𝑖𝑗 𝑎𝑖𝑗 + �̂�𝑖𝑗]. For every i, we introduce a parameter Γ𝑖 , not necessarily integer, that takes 

values in the interval [0 | 𝐽𝑖|]. As would become clear below, the role of parameter Γ𝑖 is to adjust the 

robustness of the proposed method against the level of the conservatism of solution. Our goal is to be 

protected against all cases in which up to ⌊Γ𝑖⌋ of these coefficients are allowed to change, and one 

coefficient 𝑎𝑖𝑡 changes by (Γ𝑖 − ⌊Γ𝑖⌋)�̂�𝑖𝑡. Consider the following (still nonlinear) formulation: 
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This model has an equivalent linear formulation as follows (Bertism & Sim, 2004): 

max

Γ 0

Γ            
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,  , 0      

.
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.

ij j i i ij

j N j N

ij j i i ij i
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u c x z p

a x z p b i

z p a y i j

y x y j

l x u j

p y z i

s

j

t

   

   

  

    

  

 

 

   
 (5) 

4. Proposed Approach 
In this study, MAI (Measure of Attractiveness of Investment) and 𝛽 (systematic risk measure) are 

respectively computed by fundamental and technical analysis. A portfolio consisting of n stocks is 

supposed. The current study’s proposed approach is modeled as follows: 

*

*
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*
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i i

i

i i

i

i i

i
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i

max MAI x

R x R

t

x

s

x
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 (6) 

𝑥𝑖        the share of i-th stock of portfolio 

𝑀𝐴𝐼𝑖   the financial performance measure of i-th stock company 

𝑅𝑖        the return of i-th stock  

𝛽𝑖        systematic risk measure of i-th stock 

𝑅         minimum preference return of investors 

𝛽         maximum systematic risk determined by the decision-maker 
The first constraint states that the portfolio return must be greater than the investor’s expected 

return (R). In the second constraint, the risk of the Portfolio must be smaller than the intended risk of 

decision-maker. To compute β, the market total index and the return of stock are utilized in equation 2 

(technical analysis). The third constraint is related to the budget limitation. 

In objective function, MAI indicator measured using financial and economic status of the stock 

company is maximized. This makes it possible to construct a portfolio accounting for the companies’ 

fundamental strengths and the investment’s long-term character. MAI is the under-optimization 

measure. This is the main change compared to the classic model of Markowitz. A portfolio founded on 

the MAI criterion is optimal from the fundamental point of view, i.e. it chooses the best arrangement 

in terms of the company’s economic and financial condition. 

In this study, to compute MAI measure, four groups of financial ratios are implemented including 

liquidity ratios (current ratio, instantaneous ratio), leverage and investment ratios (debt ratio, debt to 

equity ratio), activity ratios (periodicals collection, inventory period of material and goods, current 

capital turnover, fixed asset turnover, total assets turnover), and profitability ratios (net profit margin, 

operating margin, return on assets, return on capital, return on working capital). These ratios are 

utilized as input and output factors of a Data Envelopment Analysis (DEA) model to evaluate 

companies’ efficiency. In other words, MAI is the efficiency score of a company in which input and 

output parameters are financial ratios of that. 
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Since economic, political, social, and other factors are highly effective on the economic 

performance of companies, and if there is uncertainty, the company's future performance does not 

necessarily follow the past one, the values of MAI, R, and β can be uncertain.  

s.t.
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According to model (5), the certain equivalent of the model (7) is as follows:  
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Since the decision variable (x) is positive, there is no need to variable change (y).  

5. Numerical Example 
To elucidate the details of implementation of our proposed approach, a numerical example is 

investigated. The empirical example presented here focuses on the active companies on the Tehran 

stock exchange between 2015 and 2019. At first, a DEA model with super efficiency is applied to 

compute the efficiency score of these companies. After, stocks related to ten top companies (excluding 

investment companies, banks, and insurers) are selected. Table 1 demonstrates 10 companies with the 

highest values of MAI measure.  

Table 1. Ten top stocks based on fundamental analysis 
NO. Symbol MAI 

1 DSOBHAN 1.53 

2 APP 1.16 

3 ZAGROS 1.16 

4 SHEPANTA 1.14 

5 VKHARAZM 1.12 

6 FPANTA 1.08 

7 KFARAVAR 1.06 

8 QCHAR 1.03 

9 QGOLESTA 1.02 

10 RTCO 1.00 

 

Systematic risk (𝛽) is obtained for each stock using equation (2). To calculate the return of each 

stock, the following equation is used: 
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𝑅𝑡       The stock current return 

𝑝𝑡        The stock current price 

𝑝𝑡−1    The stock price in the previous period 

D         The stock cash profit (zero in this study) 

The integrated portfolio based on fundamental and technical analysis for stocks included in Table 1 

and for various values of 𝛤 has been constructed regarding model (8) and GAMS software. The results 

have been exhibited in Table 2.  

Table 2. Constructed portfolio for different gamma values 

Z 0X1 X9 X8 X7 X6 X5 X4 X3 2X 1X  

1.530 0 0 0 0 0 0 0 0 0 1.000 Γ = 0 
1.091 0 0.012 0 0.183 0 0.040 0.352 0.210 0.177 0.0026 Γ = 1 
1.057 0 0.026 0.086 0.136 0.154 0.025 0.268 0.156 0.131 0.019 Γ = 2 
1.036 0 0.022 0.092 0.188 0.020 0.286 0.190 0 0.089 0.013 Γ = 3 
1.019 0 0.015 0.076 0.176 0.336 0.014 0.221 0.082 0.069 0.010 Γ = 4 
1.009 0 0.008 0.037 0.195 0.361 0.008 0.265 0.088 0.034 0.005 Γ = 5 
1.005 0 0 0 0.264 0.483 0 0.252 0 0 0 Γ = 6 
1.005 0 0 0.264 0.483 0 0.252 0 0 0 0 Γ = 7 
1.005 0 0 0.264 0.483 0 0.252 0 0 0 0 Γ = 8 
1.005 0 0 0.264 0.483 0 0.252 0 0 0 0 Γ = 9 

1.005 0 0 0.264 0.483 0 0.252 0 0 0 0 Γ = 10 

 

It is obvious that the objective function value does not being worse when the protection level (Γ) 

increases. Variations have been shown in Figure 1 for different Γ values. To validate the proposed 

model, uncertain parameters are realized for different values in their perturbation interval. It is 

expected that the robust solution has better performance on average after repeat simulations. 

 
Figure 1. Changes in the objective function for different values of gamma 

The relative deviation of MAI measure for different perturbations in nominal (𝛤=0) and the most 

conservative case (𝛤=10) has been shown in Figure 2. It is clear that the robust objective function is 

better. In other words, after realization, deviations of the robust case are less than that of in nominal 

one.  
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Figure 2. Comparison between the robustness of solution in nominal and the most conservative case 

6. Conclusion 
The present study proposes a novel approach to constructing a portfolio by considering several 

important aspects: 1) Uncertainty- One of the existing problems in the real world, as well as portfolio 

optimization, is the uncertainty of input data. The effect of this uncertainty on the solution is such that 

only a small percentage of changes in the input data may greatly increase the probability of its 

infeasibility. In this paper, the applied strategy to face uncertainty is the Bertsimas and Sim’s 

algorithm which has some advantages such as linearity and the possibility of adjusting protection level 

regarding the uncertainty degree. 2) Fundamental analysis- in this analysis, the investor is interested in 

examining the economic conditions and environment in which the entity operates and, finally, by 

exploring its development prospects, weakness and strength aspects, and financial health, the investor 

decides whether it is worth investing in its stock or not. In this paper, MAI as a representative 

indicator was applied to enable the investor to choose stocks according to the attractiveness measured 

by some fundamental ratios of companies. 3) The risk of market- in the present study, MAI measure 

was integrated with 𝛽 as the inherent risk of market to construct a portfolio accounting for the 

companies’ fundamental strength and the investment’s long-term character. This helps decision-

makers to achieve the best arrangement in terms of market and company’s financial state and adds a 

dimension to the classical criteria of profitability and risk.  The empirical example shows that the 

proposed approach can be well implemented to deal with portfolio selection in the condition of 

uncertainty.  

For future studies, it would be interesting to perform some simulations to show the mitigation of 

parameter uncertainty. More broadly, research is also needed to determine the difference between in-

sample and out-of-sample model performance to better understanding the performance of proposed 

approach. More historical data on MAI and 𝛽 would help us to establish a greater degree of accuracy 

and less conservatism on robust solutions employing data-driven robust optimization techniques.  
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