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1. Introduction 
In the last decade, cryptocurrencies have become a $3 trillion market that can be seen to affect other 

markets. So many global investors, estimated at 300 million, have invested in these currencies, which is 

growing over time. By these definitions, it is understood that according to the expected effects of money 

movements and investors' expectations, it can be expected that the impact of this market on other 

financial markets will be more significant in the future. The financialization of Bitcoin and its 

characteristics of high returns and high volatility mean that any evidence of risk spillovers between 

Bitcoin and other financial assets would have a major impact on risk management, investment portfolio 

management, and policy-making (Baur, Hong & Lee, 2018) and (Gon & Lin, 2021). Specifically, 

Bitcoin shares some similarities with Gold and USD. Besides, several famous financial media outlets, 

such as CNN, have labeled Bitcoin as New Gold, and CFTC has also declared virtual money a 

commodity like Gold. This means that if users of Bitcoin are rational, Bitcoin has some intrinsic value 

like Gold. It has also proved that Gold maximizes the attribute of value storage by sacrificing liquidity 

while USD maximizes liquidity by sacrificing storage value, but Bitcoin combines the characteristics of 

Gold and USD and can be used for payments, portfolio management, and risk hedging like Gold and 

USD (Dyhrberg, 2016). Other studies have also attempted to explore Bitcoin’s ability to hedge market 

risks and found that it can be used for payment, portfolio management, and risk hedging (Bouri et al, 

2020; Das et al, 2020; Klein et al, 2018; Kliber et al, 2019  Shahzad et al, 2019). 

Bitcoin and Gold relationship, as well as Bitcoin and USDs, has also been explored in recent years 

(Klein  et al., 2018; Baur et al., 2018; Wang et al., 2019; Bai et al., 2021). 

So, it is vital to look at the relationship between Bitcoin and other financial assets at any given 

time. This allows us to understand the co-movement of financial assets with each other and to extract 

the appropriate decision in trading positions. Therefore, the objective of this research is to find better 

and more efficient models than copula models to evaluate the dependence structure and 

simultaneously the regime switching between assets in the upward and downward trends. 

 Therefore, this paper uses an ARMA-GARCH-t process to create the marginal distribution 

functions for each time series residual and uses the Markov switching copula approach to find the 

best-fitted copula model and calculate the probabilities of presence in each regime. 

As seen, examining the correlation structure and choosing the appropriate hypothesis for this 

structure is variable in different studies, and therefore, it has changed the results of different articles. 

The Novelties of this paper are as follows: 
1. Combining the copula method with the Markov switching model.  
2. Using t-Student marginal distribution functions in the copula method. 

3. Building models of dependence structure between Bitcoin, other cryptocurrencies and gold and 

oil using Markov switching copula 
The article is organized as follows. The literature review is presented in section 2, Research 

methodology is presented in Section 3, Empirical results are presented in Section 4 and the article is 

concluded in Section 5. 

2. Literature Review 
Research studies on the relationship between Bitcoin and Gold, as well as between Bitcoin and USD, 

yield some controversial results. For example, Baur et al. (Baur et al., 2018) found that Bitcoin returns 

are uncorrelated to Gold and USD returns by linear regression analysis, whereas Bouri et al. (Bouri et 

al. 2018) demonstrated that Bitcoin returns correlated closely with Gold and USD returns by a smooth 

transition VAR-GARCH-in-mean model. (Wang et al, 2019) proved that there is no return spillover 

between Bitcoin and Gold/currency, and volatility spillover exists only between Bitcoin and Gold by a 

VAR-GARCH-BEKK model. Interestingly, using different extensions to the NARDL model, (Bouri et 

al. 2018) found a significant negative influence of Gold and USD prices on Bitcoin prices, whereas 

(Jareño et al. 2020) showed that the short-term and long-term influence of Gold on Bitcoin is 

asymmetric. These opposite results may be because the correlation between Bitcoin and Gold/USD is 

dynamic. 

Some studies have examined the effect of interdependence between financial assets and other 

approaches (Awartani & Maghyereh, 2013) that employ a DCC-GARCH model and show the 
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correlation between stock market returns and Oil price changes varies over time. Although the DCC-

GARCH model allows for the time-varying conditional correlation, it fails to reproduce the non-linear 

dependence that may exist between the variables and does not provide information about the tail 

dependence. The tail dependence corresponds to the possibility of joint events such as low or high 

extreme events. To do so, an alternative approach based on copula functions has been adopted. The 

main advantage of the copulas lies in separating the dependence structure from the marginals without 

making any assumptions about the distribution. Using several copula functions, (Nguyen & Bhatti, 

2012) provide evidence of left tail dependence in Vietnam, whereas there is no tail dependence in 

China. In the case of six CEE countries (Bulgaria, Czech Republic, Hungary, Poland, Romania, and 

Slovenia), left tail dependence was also found (Aloui et al., 2013). 

Prior studies like (Wang et al., 2013) apply Markov-switching copula functions to examine the 

dependence between international stock markets. These studies consider a finite mixture of conditional 

bivariate copulas, where the copula parameter is fixed, but the functional form of the copula functions 

follows a Markov-switching model. This approach depends on the selection of suitable copulas. 

This paper proposes an approach in which the copula function remains constant, but the copula 

parameter is subject to change over time according to a Markov-switching model (see Ji et al, 2020) 

for an Application to stock market risk spillover from the US to other G7 countries). 

Recently, researches such as (Rehman and Tiwari, 2023) investigate the dependence structure 

among the seven emerging stock markets by employing a dependence-switching copula model. 

 Also (Niu et al , 2023) propose a Markov-switching mixed-Clayton (Ms-M-Clayton) copula model 

that combines a state transition mechanism with a weighted mixed-Clayton copula for investigate the 

dynamic risk dependence between Chinese and mature stock markets in the Americas, Europe, and 

Asia–Oceania regions. 

Some studies, like (Fülle and Herwartz, 2022), used copula with Markov, like (Fülle and Herwartz, 

2022), used copula with Markov switching for portfolio forecasting. They apply a Markov switching 

copula multivariate GARCH (MS-C-MGARCH) model for this purpose. Before that, (Fülle and 

Herwartz, 2022)  suggested a new Markov switching approach to multivariate volatility modeling for 

improving the dynamic assessment of financial market interdependencies and tried to answer this 

question: Is Gold Always a Safe-Haven?  

From a financial science point of view, investing in different assets has always been an essential 

matter. Moreover, the question that investors faced was, which asset should we invest in? Paying 

attention to return has always been considered in the topic of financial research. Over time, in 1952, 

with the model that )Markowitz, 1952) developed, the majority of the articles in this field were placed 

on investment and building an assets portfolio by considering the two issues of risk and return. 

Recently, beyond the Markowitz model (mean-variance model), ESG factors (environmental, social, 

and Governance) and economic/business cycles have also been taken into consideration. This study 

focused on the modeling of economic/business cycles and their regime switching via the dependence 

structure modeling between assets. 

3. Methodology 
3.1. Model for Marginal Distribution 

Before estimating the copula function, we employ the ARMA(1,1)-GARCH(1,1)-t model to construct 

the marginal distribution and calculate residuals of Bitcoin, Ethereum, Cardano, Binance coin, Ripple, 

Oil, and Gold. In this model, the conditional mean is calculated by an ARMA (1,1) model: 

0 0

1 1

 

 

      
m n

t j t i j t j t t

i j

r φ φ r ε ψ ε μ ε  

In which 𝜑0  and 𝜑j are the parameters to be estimated, m is the lag order of returns ,n is the order 

of the moving average, and εt= σtzt, zt ∼ i.i.d. D(0, 1) is the error item. The conditional variance, σ2
t, is 

given by a GARCH model: 

2 2 2

0

1 1

, . . σ σ 

 

     
q p

t t t t t i t i i t j

i j

ε σ Ζ      Ζ  i  i  d α α β  

where α0, αj, and βj are the parameters to be estimated and sum (αj)+sum(βj) should be smaller than 1, 

p and q are the lag order of the ARCH term and GARCH term, respectively. (Brooks, 2002) proves 
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that using a GARCH-class model with one lag order is sufficient to describe the volatility clustering in 

asset returns. So, we set m, n, p, and q to be one, constructing an ARMA (1,1)-GARCH (1,1) model. 

To capture the fat tail and asymmetry distribution features of Bitcoin, Ethereum, Cardano, Binance 

coin, Ripple, Oil, and Gold returns, we assume the i.i.d. random variable, zt, follows the t-distribution 

(Nguyen & Bhatti, 2012). 

3.2. Copula Function 

We explore the dependence structure between Bitcoin, Ethereum, Cardano, Binance coin, Ripple, Oil, 

and Gold using some bivariate copula functions. According to Sklar (Sklar, 1959), a multivariate 

copula can couple multi-marginal distributions to represent a joint distribution function as: 

      1 1 1, , , ,  d d dF x    x C F x    F x  
For two marginal distributions: 

      1 2 1 1 2 2, ,F x   x C F x  F x  

where F(x, y) is the joint distribution function of two random variables; F1(x1) and F2(x2) are the 

marginal distribution functions of X1 and X2, respectively; and C(u, v) for u = F1(x1) and v= F2(x2). 
Sklar's theorem shows that when the variables are continuous, each multivariate probability 

distribution function can be represented using a marginal distribution and a dependent structure, which 

is inferred as follows: 

 
    
   

 
      

n n n
j j1 1 n n

1 n 1 1 n n j j

j 1 j 11 1 n n j

F XC F X ,   ,  F
f x ,   ,  x       C F X ,   ,  F X     f X

F X F X X 

 
     

  
 

X
 

where fj is the marginal density function, Fj (Xj) is the marginal distribution function, and c is the 

copula density function(Cherubini et al., 2004). 

Copula functions allow modeling for the dependence structures and marginal distributions, 

providing flexibility in characterizing dependence. Some copula functions can also capture the tail 

dependence, that is, the probability that two variables experience extreme upward or downward 

movement. The upper and lower tail dependence can be obtained by the following: 

 

 

1

1

1 2 ,
lim

1

,
lim





 






U
u

L
u

u C u u
λ

u

C u u
λ

u

 

where λU, λL ∈ [0, 1]. If  λL > 0 (λU > 0), there is a lower (upper) tail dependence. 

To obtain more accurate dependence characteristics, seven copula functions with different tail 

dependence characteristics are considered in this study. These copula functions are specified as 

follows. 

3.2.1. Normal Copula (Gaussian) 

The function of this Copula is as follows: 

      1 1, ; Φ Φ ,Φ NC u v ρ u v  

In this equation ρ ϵ [-1,1] is the correlation parameter. Φ is the Gaussian standard cumulative 

distribution function and Φ−1(𝑢), Φ−1(𝑣) are the standard function. The tail dependence of this 

Copula function is zero. 

 
11

1

1 2

ΦΦ

1 1 1

11

2 2

1 1
Φ Φ , ,Φ exp( )

2
2
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  

 
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T
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Given that in Gaussian Copula, the marginal density functions are considered to be the standard 

normal, the Gaussian Copula density is obtained as (Cherubini et al, 2004): 

 
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So we will have the following: 

   1

1 1

2

1 1
, , exp 1

2

 
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 

N T

nC u    u δ ρ δ

ρ  

 

where  
1

1 1Φ ,   ,  Φ  
n

T

u uδ . 

3.2.2. Student-t Copula 

Student-t copula function is defined as: 

      1 1, ; , T υ υC u v ρ T t u t v  

In which υ is the parameter of degree-of-freedom, t-1(u) and t-1(v) are the quantile functions of 

Student-t, and T is the bivariate Student-t cumulative distribution function. This copula function has 

symmetric nonzero tail dependence, and the tail dependence can be obtained by: 

U L υ 1

υ 1 1 ρ
λ λ 2t  

1 ρ


   
   

  

 

The density function and the cumulative distribution function of the t-student distribution are: 
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3.2.3. Clayton Copula 

Clayton copula function is defined as: 

   
1

, ; max 1 ,0


  
   

 

δ δ δ
CLC u v δ u v  

It allows for lower tail dependence and upper tail independence: 
1

2 , 1


  δ
Lλ   δ                and           0Uλ  

The density function of this Copula is as follows: 

     
 

2
1CLc u,  v 1 (u v 1) uv

      
δδ δ δδ  

3.2.4. Rotated Clayton Copula 

Rotated Clayton copula is defined as: 

   , ; 1 1 ,1 ;     RCL CLC u v δ u v C u v δ  

This copula has an upper tail dependence and no lower tail dependence: 
1

2 , 1


  δ
Uλ   δ  

3.2.5. Gumbel Copula 

Gumbel copula is defined as: 

      
1

, ; exp log log
  

     
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δ δ δ

GC u v δ u v  

The tail dependence of this copula function is asymmetric with lower tail independence and upper 

tail dependence: 
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1

2 2 , 1  δ
Uλ   δ  

3.2.6. Rotated Gumbel Copula 

Rotated Gumbel copula is defined as: 

   , ; 1 1 ,1 ;     RG GC u v δ u v C u v δ  

Unlike the Gumbel Copula, this Copula function has a lower tail dependence but no upper tail 

dependence. 
1

2 2 , 1  δ
Lλ   δ  

3.2.7. Frank Copula  

Frank copula was introduced by Frank in 1979. This Copula is the symmetric state of Archimedean 

Copula. The density function and the cumulative distribution function of this Copula are as follows: 

 
   

  
2

1
,

  

    




  

θ u v θ

F

θ u v θu θv θ

θe e
c u  v

e e e e

 

 
  1 2

1 2

1 11
, ln 1

1

 



  
   
 
 

θu θu

F

θ

e e
C u  u

θ e
 

In this Copula function, the dependence on the upper tail and the lower tail is zero. 
In the following, Table 1 shows a summary of the copulas used in this article, including 

Elliptical(Normal, t-student) and Archimedean(Frank, Clayton, Gumbel) copulas. 
Table 2 shows a summary of the BB copula family that is also used in this article. Each member of 

the BB family is a combination of two Archimedean copulas. Therefore, the BB family can be 

included in the family of Archimedean copulas. Copula BB1 is a combination of Clayton and Gumbel 

copulas, BB6 is a combination of Joe and Gumbel copulas, BB7 is a combination of Joe and Clayton 

copulas, and BB8 is a combination of Joe and Frank copulas(Brechmann & Ulf Schepsmeier, 2013). 

Table 1. Summary of copulas 

Normal 𝐶𝑁(𝑢, 𝑣; 𝜌) = Φ(Φ−1(𝑢), Φ−1(𝑣)) 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 =
2

𝜋
sin−1 ρ Tail dependence is zero 𝜌 𝜖 [−1,1] 

t-student 𝐶𝑇(𝑢, 𝑣; 𝜌) = 𝑇(𝑡𝜐
−1(𝑢), 𝑡𝜐

−1(𝑣)) 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 =
2

𝜋
sin−1 ρ λU = λL = 2tυ+1 (

−√υ + 1√1 − ρ

√1 + ρ
 ) 𝜌 𝜖 [−1,1] 

Clayton 𝐶𝐶𝐿(𝑢, 𝑣; 𝛿) = max {(𝑢−𝛿 + 𝑣−𝛿 − 1)
−1
𝛿 , 0} 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 =
𝛿

𝛿 + 2
 Lower tail dependence 𝜆𝐿 = 2

−1
𝛿 , 𝛿 > −1 𝛿 𝜖 [−1, ∞) 

Rotated Clayton 𝐶𝑅𝐶𝐿(𝑢, 𝑣; 𝛿) = 𝑢 + 𝑣 − 1 + 𝐶𝐶𝐿(1 − 𝑢, 1 − 𝑣; 𝛿) 
 Upper tail dependence 𝜆𝑈 = 2

−1
𝛿  𝛿 𝜖 [−1, ∞) 

Gumbel 𝐶𝐺(𝑢, 𝑣; 𝛿) = exp {−((− log 𝑢)𝛿 + (− log 𝑣)𝛿)
1
𝛿} 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 = 1 −
1

𝜃
 Upper tail dependence 𝜆𝑈 = 2 − 2

1
𝛿 𝛿 𝜖 [1, ∞) 

Rotated Gumbel 𝐶𝑅𝐺(𝑢, 𝑣; 𝛿) = 𝑢 + 𝑣 − 1 + 𝐶𝐺(1 − 𝑢, 1 − 𝑣; 𝛿) 
 Lower tail dependence 𝜆𝐿 = 2 − 2

1
𝛿 𝛿 𝜖 [1, ∞) 

Frank Copula 𝐶𝐹(𝑢1, 𝑢2) = −
1

𝜃
ln (1 +

(𝑒−𝜃𝑢1 − 1)(𝑒−𝜃𝑢2 − 1)

𝑒−𝜃 − 1
) 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙 = 1 −
4

𝜃
+ 4

𝐷1(𝜃)

𝜃
 Tail dependence is zero 𝜃 𝜖 𝑅 − {0} 
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Table 2. Summary of BB copula family 
 Generator function Par Kendall Tail dependence 

BB1 

(Clayton-

Gumbel) 
(𝑡−𝜃 − 1)

𝛿
 

𝜃 ≥ 0, 
𝛿 ≥ 1 

1 −
2

𝛿(𝜃 + 2)
 (2

1
𝛿𝜃 , 2 − 2

1
𝛿) 

BB6 

(Joe-

Gumbel) 
(−log (1 − 𝑡)𝜃)

𝛿
 

𝜃 ≥ 1, 
𝛿 ≥ 1 

1 +
4

𝛿𝜃
∫ (−log (1 − 𝑡)𝜃) ×

1

0

(1 − 𝑡)(1

− (1 − 𝑡)𝜃). 𝑑𝑡 

(0,2 − 2
1

𝛿𝜃) 

BB7 

(Joe-

clayton) 
(1 − (1 − 𝑡)𝜃)

−𝛿
− 1 

𝜃 ≥ 1, 
𝛿 ≥ 0 

1 +
4

𝛿𝜃
∫ (−(1 − (1 − 𝑡)𝜃)

𝛿+11

0
×

 
(1−(1−𝑡)𝜃)

−𝛿
−1

(1−𝑡)𝜃−1
).dt 

(2
−1
𝛿 , 2 − 2

1
𝜃) 

BB8 

(Joe-

frank) 
− log

1 − (1 − 𝑡𝛿)𝜃

1 − (1 − 𝛿)𝜃
 

𝜃 ≥ 1, 
𝛿 ∈ 1] 

1 +
4

𝛿𝜃
∫ (−log

(1−𝑡𝛿)𝜃−1

(1−𝛿)𝜃−1

1

0
) × (1 − 𝑡𝛿)(1 −

(1 − 𝑡𝛿)−𝜃).dt 
(0,0) 

3.3. Markov-Switching Copula  

The time-varying copulas have been introduced by (Patton, 2006) to allow for time-variation in the 

dependence structure. They constitute an extension of Sklar’s theorem, which shows that any joint 

distribution function may be decomposed into its marginal distributions and a copula that describes the 

dependence between the variables, for the conditional case. In what follows, we give a general 

definition of the conditional copula and present the time-varying copula functions used to examine the 

dependence between the series over time. We consider several time-varying copulas that capture 

different patterns of dependence, namely, Normal, t-Student, Gumbel, Clayton and Rotated Clayton, 

and Rotated Gumbel. The Gaussian and t-Student are characterized by symmetric dependence, while 

the Gumbel and Clayton are used to capture the right and the left dependencies respectively. 

The conditional copula C is the joint distribution function of 𝐹
𝑋1│𝐻

(𝑋1│𝐻) and 𝐹
𝑋2│𝐻

(𝑋2│𝐻), 

where these two are the conditional marginals of X1 and X2 given a conditioning variable H. 

3.3.1. Sklar’s theorem 

Let  
1 2

1 2, |
X X H

F x x H  be the bivariate conditional distribution of  1 2, |  X X H  with continuous conditional 

marginals  
1

1X H
F X H  and  

2
2X H

F X H . Then, there is a unique conditional copula C such that: 

      
1 2 1 2

1 2 1 2, | | ,
X X H X H X H

F x x H C F X H   F X H  

To model the joint conditional distribution, the evolution of the conditional copula C has to be 

specified and the functional form of C is fixed (Patton, 2006). 

In this paper, we assume that the dependence parameter is allowed to vary over time and follows a 

restricted ARMA(1,1) process where the intercept term switches according to some homogeneous 

Markov process. However, we consider St → Markov (P), where St is a Markov chain irreducible and 

ergodic with n possible state spaces, i.e, P is a n*n matrix for these states and the transition 

probabilities in matrix P are equal to  1  ij t tp P S j S i  where 
1

1



n

ij

j

p  for all of the time. pij is the 

probability of being in regime i at time t given that the market was in regime j at time t −1. For 

instance, if n=2 then: 

11 12

21 22

 
  
 

p p
P

p p
 

4. Empirical results 
4.1. Data and summary statistics 

The data set of the present study includes 1177 price data and returns of the five major 

cryptocurrencies, including Bitcoin-Ethereum-Ripple-Binance coin-Cardano, and Gold and Oil, in the 
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period from April 26, 2018, to July 15, 2021. The selected period allows us to consider the period of 

recession before 2021 as well as the period of growth in 2021. 

Table 3 describes the statistics for each time series. In this table, it can be seen that according to the 

standard deviation, Ripple currency has the highest risk (6.34), followed by Cardano with (6.04) and 

the lowest risk belongs to Gold. It can also be noted that the risk of Bitcoin is lower than all other 

currencies and close to the risk of Oil. Also, the highest average return belongs to Binance coin (44%) 

and the lowest belongs to Gold (7.9%). It is important to note that the Ripple currency has the highest 

risk and lowest returns among other cryptocurrencies, and the reason for this can be found in the 

litigation in which the cryptocurrency is involved in the courts of the United Kingdom. Gold, Bitcoin, 

and Ethereum also have negative skewness (skew to the right), and other assets have positive 

skewness. Also, all the assets under study have higher kurtosis than the normal distribution. The 

Jarque-Bera test also strongly rejects the null hypothesis that time series are normal for all time series. 

Table 4 shows the matrix of correlation coefficients between the studied data. As can be seen, in 

the period under study, the highest correlation coefficients of bitcoins are with Cardano, Binance coin, 

Ripple, Ethereum, Gold, and finally Oil, respectively. A noteworthy point is the correlation coefficient 

between Bitcoin and Ethereum in this table (about 20%) which shows that the Ethereum currency does 

not follow Bitcoin entirely as in the past. 

Table 3. Summary statistics 

 Mean Median Max Min 1th Q 3th Q Std.dev Skew Kurt Jarqu-

bra 

BTC 0/186 0/13 19/56 -38/1 -1/53 1/78 3/874 -0/516 10/206 1236 

ETH 0/238 0/12 26/46 -44/7 -2/13 2/77 5/243 -0/357 7/495 483 

XRP 0/171 0 56/67 -41/78 -2/30 2/17 6/340 1/548 15/914 4114 

BNB 0/441 0/12 69/97 -43/96 -2/09 2/97 5/943 1/347 21/758 8376 

ADA 0/311 0 33/22 -41/72 -2/90 3/00 6/043 0/289 4/489 59 

GOLD 0/079 0/09 7/41 -7/48 -0/31 0/39 1/286 -0/085 6/426 274 

OIL 0/084 0/135 25/1 -24/59 -0/82 1/00 3/107 0/013 28/733 15446 

Table 4. Correlation coefficients 

 BTC ETH ADA BNB OIL GOLD XRP 

BTC 1       

ETH 0/2029 1      

ADA 0/7085 0/1906 1     

BNB 0/6662 0/2025 0/6387 1    

OIL 0/0054 0/0179 0/0150 -0/00413 1   

GOLD 0/1098 -0/0171 0/0789 0/0785 0/0164 1  
XRP 0/599 0/194 0/6383 0/5586 0/011079 0/0348 1 

Note: Correlation coefficients are numbers that vary in the range (-1,1). A value of 1 indicates an absolute direct correlation 

and a value of -1 indicates an absolute inverse correlation. 

4.2. Model estimation 
Before estimating the marginal distribution of stock returns, some necessary diagnoses need to be 

tested. Table 5 presents the autocorrelation, conditional heteroscedasticity tests, Normal test, and 

stationary test for all asset returns. In the first part of Table 5, the results of the Shapiro test are given, 

which strongly rejects the Null hypothesis, which is the normality of the time series of this study. In 

the second part of Table 5, The Dickey-Fuller test shows that in the all-time series studied, the null 

hypothesis that the time series is non-stationary is rejected and the series remains stationary. 

The Ljung -Box test was used to examine the autocorrelation between the data of each time series. 

As can be seen in the third section of Table 5, at all levels of significance it rejects the null hypothesis 

that there is no autocorrelation between data over time for all assets except Ripple. 

The ARCH effect is related to heteroscedasticity, often referred to as the serial correlation of 

variances. This effect is often manifested when a variance or fluctuation of a particular variable creates 

a pattern that is determined by certain factors. In the fourth section of Table 5, it is shown that in the 

time series of the assets of Cardano, Binance coin, Ripple, Oil, and Gold, the null hypothesis that there 
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is no ARCH effect is rejected and their time series has variance heterogeneity. But Bitcoin and 

Ethereum are found to have no arch effect. 

Table 6 presents the estimated coefficients of marginal distribution for each asset return based on 

the ARMA(1, 1)-GARCH(1, 1)-t model. 

Table 7 shows the results of the Ljung-Box test after implementing the GARCH model. The results 

show that the effect of autocorrelation on time series data is eliminated. 

Table 5. Autocorrelation and conditional heteroscedasticity tests 
SHAPIRO TEST 

 XRP GOLD OIL BNB ADA ETH BTC 

Statistic 0. 828 0. 82 0. 724 0. 867 0. 94 0. 9 0. 888 
P-value 0. 000

* 0. 000
* 0. 000

* 0. 000
* 0. 000

* 0. 000
* 0. 000

*
 

The Dickey-Fuller test 
Statistic -16.5 -19. 33 -19. 82 -15. 95 -16. 35 -16. 45 -16. 1 
P-value 0.01** 0. 01** 0. 012

** 0. 01** 0. 01** 0. 01** 0. 01** 
The Ljung -Box test 

Statistic 2. 13 61. 2 14. 43 20. 68 22. 23 34. 75 20. 44 
p-value 0. 54 0. 000

*** 0. 002
*** 0. 0001

*** 0. 000
*** 0. 00

*** 0. 0001
*** 

The ARCH effect test 
Statistic 27.45 59. 2 189 20. 78 8. 26 2. 66 0.53 
p-value 0.00

**** 0. 00**** 0. 00**** 0. 00
**** 0. 004

**** 0. 1026 0.466 
     Note: 

     * Means rejecting the null hypothesis, which indicates that the distribution is not normal.  

     ** Means that the null hypothesis of this test is rejected and the series is stationary.  

     *** Indicates that the null test hypothesis that there is no autocorrelation is rejected.  

     **** Indicates that the null hypothesis is rejected and there is an ARCH effect. 

 

Table 6. Coefficient estimation of marginal distribution for each asset return 

XRP GOLD OIL BNB ADA ETH BTC  

       Conditional 

mean 

-0. 0022 

(0. 0017) 
-0. 00018 

(0. 0002) 
0. 0002 

(0. 0006) 
0. 0005 

(0. 0015) 
0. 0002 

(0. 0017) 
-0. 00001 

(0. 001) 
0. 0008 

(0. 001) 
Constant 

-0. 53 

(0. 24) 
-0. 36 

(0. 142) 
-0. 479 

(0. 1458) 
-0. 63 

(0. 277) 
-0. 527 

(0. 098) 
-0. 605 

(0. 126) 
-0. 417 

(0. 16) AR(1) 

0. 445 

(0. 236) 
0. 129 

(0. 166) 
0. 374 

(015) 
0. 56 

(0. 298) 
0. 435 

(0. 1) 
0. 512 

(0. 132) 
0. 315 

(0. 18) 
MA(1) 

       Conditional 

variance 
0. 0005 
(0. 0002) 

000002 
(0. 000006) 

0. 0001 
(0. 0002) 

0. 0001 
(0. 00006) 

0. 0003 

(0. 0001) 
0. 00018 

(0. 00009) 
0. 00011 
(0. 00004) OMEGA 

0. 475 

(0. 173) 
0. 55 

(0. 1339) 
0. 11 

(0. 07) 
0. 1532 

(0. 053) 
0. 106 

(0. 039) 
0. 079 

(0. 0397) 
0. 082 

(0. 048) ALPHA 

0. 5237 

(0. 1426) 
0. 356 

(0. 054) 
0. 872 

(0. 05) 
0. 8216 

(0. 0465) 
0. 794 

(0. 055) 
0. 86 

(0. 052) 
0. 851 

(0. 046) BETA 

0. 976 

(0. 049) 

0. 87 

(0. 043) 

0. 855 

(0. 041) 

0. 8917 

(0. 052) 

0. 9568 

(0. 058) 

0. 894 

(0. 049) 

0. 922 

(0. 067) 
Skew 

2015. 98 4033. 8 3074. 4 1937. 96 1768. 8 1970. 6 2365. 13 Log-like 

Note: 

() indicates standard error. 
 

Table 7. Ljung-box test after using the GARCH model 

 XRP GOLD OIL BNB ADA ETH BTC 
Statistic 0. 45 0. 88 0. 73 0. 67 0. 06 0. 0247 0. 07 
p-value 0. 5 0. 2 0. 39 0. 41 0. 8 0. 87 0. 79 
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In this study, the Copula approach was used to find the joint-distribution function between each 

pair of assets. To evaluate how the models used in this research perform compared to other Copula 

models, 11 different Copula models and 6 Hidden Markov Switching Copula models were used. 

Therefore, initially, all the copulas were used through the recursive method for each asset pair, and 

log-likelihood values were obtained for each model. Then the best model was selected for each pair. 

Table 8 shows log-likelihood values for the selected time-varying Copulas with regime change, 

including MS-CN
1
, MS-CT

2
, MS-CC

3
, MS-CG

4
, MS-CRC

5
, and MS-CRG

6
, as well as log-likelihood 

values For other copulas, it shows Normal, t-student, Clayton, frank, joe, Rotated Clayton, BB8, BB7, 

BB6, BB1, Gumbel, and Rotated Gumbel. From Table 8 it can be seen that all log-likelihood values 

for time-varying Copulas with regime change are obviously more significant than the static Copula 

values for all asset pairs. 

Table 8. The log-likelihood value for time-varying copula with regime switching. 

BTC-XRP BTC-GOLD BTC-OIL BTC-BNB BTC-ADA BTC-ETH  
500 8.43 3.65 426.1 510.18 81.6 MS-CN 
443 9.24 3.45 437.7 528.18 91.15 MS-CT 
498 5.28 1.3 445.5 512.8 90.7 MS-CC 

443.6 5.05 2.53 282 354.2 69.7 MS-CG 
357 5.68 2.68 196 243 37.5 MS-CRC 
538 5.58 0.9 468.2 289.9 36.4 MS-CRG 

361. 8 7. 85 0 337 396. 5 25. 21 normal 
440. 2 7. 43 2. 16 373. 2 468. 4 41. 67 T student 
391. 2 5. 28 0. 51 386. 5 467. 9 27. 16 clayton 
339. 1 5. 05 0. 08 382. 15 354. 7 26. 71 gumbel 

395. 71 7. 76 0. 17 328. 9 398. 2 21 frank 
228. 65 2. 9 0. 01 177. 9 231. 3 19. 82 joe 
424. 4 6. 34 0. 5 401. 3 489. 4 33. 99 BB1 (clayton-Gumbel) 
339 5. 03 0. 07 282 354. 6 26. 7 BB6 (joe-Gumbel) 

413. 6 5. 94 0. 5 398. 8 486. 5 34. 7 BB7 (Joe-clayton) 
362. 3 7. 85 0 297. 5 358 22. 15 BB8 (joe-frank) 
240. 7 5. 63 0. 21 196. 9 243 20. 52 RC 

 

As shown in Table 8, the MS-CT model is best for the BTC-ETH, BTC-ADA, and BTC-GOLD 

pairs, the MS-CRG model is the best model for the BTC-XRP and BTC-BNB pairs, and the MS-CN 

model is the best model for the BTC-OIL pair. 

Table 9 summarizes the parameters obtained from the best time-varying Copula model with regime 

switching for each asset pair. This paper uses the MLE method to estimate the Copula model based on 

(Joey 1997). In this section, we distinguish two modeled regimes into two modes of high dependency 

and low dependency. 

Table 9. Coefficient estimation for time-varying copula with regime switching. 

P Kendallreg2 Kendallreg1 df2 𝜔2 df1 𝜔1  

(
0. 999 0. 001

0 1
) 0. 026 0. 477 3. 07 

(0. 99) 
0. 68 

(0. 047) 
9. 85 
(4. 25) 

0. 041 
(0. 039) 

BTC-ETH 
(MS-CT) 

(
0. 968 0. 032
0. 042 0. 958

) 0. 337 0. 69 7. 5 

(2. 94) 
0. 5 

(0. 047) 
3. 2 

(0. 8) 
0. 884 
(0. 014) 

BTC-ADA 

(MS-CT) 

(
0. 976 0. 024
0. 015 0. 985

) 0. 37 0. 69 
- 

 
1. 59 

(0. 059) - 3. 244 

(0. 2) 
BTC-BNB 

(MS-CRG) 

(
0. 011 0. 989
0. 166 0. 834

) 0. 07 -0. 46 - 0. 111 

(0. 036) - -0. 66 
(0. 100) 

BTC-OIL 

(MS-CN) 

                                                 
1. Markov switching-copula normal model 

2. Markov switching-copula t-student model 

3. Markov switching-copula clayton model 

4. Markov switching-copula Gumbel model 

5. Markov switching-copula rotated clayton model 

6. Markov switching-copula rotated Gumbel model 
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(
0. 998 0. 002
0. 004 0. 996

) 0. 145 0. 04 10. 51 

(7. 75) 
0. 226 

(0. 06) 
30 

(28. 3) 
0. 062 

(0. 04) 

BTC-

GOLD 

(MS-CT) 

(
0. 975 0. 025
0. 027 0973

) 0. 34 0. 718 - 1. 51 

(0. 06) - 3. 55 
(0. 195) 

BTC-XRP 

(MS-CRG) 

In Table 9, the values 𝜔1 and 𝜔2 are the Copula parameters for each pair from regime one and 

regime 2, and the values df1 and df2 are the degrees of freedom for those pairs that use the MS-CT 

model for regime one and regime 2. Kendallreg1 is the Kendall-Tau correlation coefficient for regime 1 

and Kendalreg2 for regime 2. The last column also shows the P matrix, which shows the transition 

matrix between different regimes over time. For example, for the BTC-ADA pair, the value of P11 is 

0.968, which indicates the probability of the presence of the pair in regime 1, and the value of P22 is 

0.958, which indicates the probability of the relationship of this pair in regime 2. However, it is better 

to analyze the transfer matrix column more in Table 9. 

In Table 9, for the BTC-ETH pair, it can be seen that the Kendall-Tau coefficient of regime 1 is 

0.477, which we consider to be a high-dependent state, and the Kendall-Tau coefficient of regime 2 is 

0.026, which makes this regime a low-dependent state. So, when the relationship between these two 

pairs is in regime 1, that period is most likely the period when the dependence between these pairs is 

high and therefore their movement with each other is maximal. 

In Table 9, for the BTC-ADA, BTC-BNB, and BTC-XRP pairs, the Kendall-Tau values of regime 

1 are greater than those of regime 2, and therefore, for these three pairs, regime 1 is highly dependent, 

and regime 2 is low dependent. Also, for the BTC-GOLD pair, it can be seen that the Kendall-Tau 

regime 2 is more than 1, so we consider the second regime to be highly dependent and regime 1 to be 

low dependent. For the BTC-OIL pair, there is a noteworthy point. It can be seen that the Kendall-Tau 

coefficient of regime 1 is negative, which we consider as a high dependence state, and regime two as a 

low dependence state. It is later stated what the relationship is for this pair over time in terms of 

presence in time-varying regimes. 

4.3. Smoothed probabilities  
The two dependency regimes defined in the previous section can now be considered with smooth 

probabilities. Figures 1 to 6 show the probability of each regime in a high or low dependence on 

variable time for each yield pair. At each point in time, the sum of the probabilities of high 

dependency and low dependency is equal to 1, but the probability of change between regimes (high 

and low dependency) varies for each pair over time. 

As can be seen in Figure 1, the regime change in the BTC-ETH pair relationship did not occur 

much, and over time, the model can predict what the relationship will be between them. The upper 

diagram in Figure 1 shows regime one, and the lower diagram shows regime two and shows the 

probabilities of entering each regime. In this figure, it can be seen that Markov's replacement model 

characterizes the regime established between these pairs up to the 980 period of regime 1, which 

enters the second regime (high dependency mode) approximately after the 980 period. It can be seen 

that according to the price chart of Bitcoin and Ethereum, this regime change occurred during the 

bullish market. 

 
Fig. 1. Smoothed probabilities for low and high dependence regimes BTC-ETH 
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Figure 2 shows the regime changes for the BTC-ADA pair. As we can see, the regime changes in 

this pair are relatively greater than the BTC-ETH pair, but it can be seen that over time there have 

been many periods in which the correlation between Bitcoin and Cardano has been minimized and 

entered into the regime 2. But in general, most of the time the relationship between this pair was in 

regime 1. 

 
Fig. 2. Smoothed probabilities for low and high dependence regimes BTC-ADA 

Figure 3 shows the probabilities of smoothness between the BTC-BNB pair. It is observed that in 

the period of 500 to 800, the relationship between the two is in the first regime, and in the bullish 

market, the relationship between the two currencies is mainly in the second regime. But what is the 

cause?  

As can be seen in Figure 3, from the 900 period, when the market was highly bullish, the 

relationship of Bitcoins to these currencies, namely Cardano and Binance coins, fell into regime 2(low 

dependency). This is due to the 40-fold increase in Binance coin and the 30-fold increase in Cardano 

versus the 7-fold increase in Bitcoin. Therefore, it can be noted that if the market is bullish and the 

dependency regime enters a state of low dependence, it can be expected that the second currency (here 

Binance coin and Cardano) will grow faster than Bitcoin. This can also be a topic for research in 

future articles. 

In Figure 4 we see the relationship between the BTC-XRP pair, which is almost similar to the 

relationship between Bitcoin and Cardano. 

 
Fig. 3. Smoothed probabilities for low and high dependence regimes BTC-BNB 
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Fig. 4. Smoothed probabilities for low and high dependence regimes BTC-XRP 

 
Fig. 5. Smoothed probabilities for low and high dependence regimes BTC-OIL 

Figure 5 shows that the probability of the BTC-OIL pair being in different regimes is highly 

variable and fluctuates. But with more attention, it can be seen that the main situations of the 

relationship between these two currencies are in the second regime, and in most cases, the probability 

of being in this regime is close to 80%. This issue can be analyzed from the relationship transfer 

matrix of this pair. As shown in the following matrix: 

0.011 0.989

0.166 0.834

 
 
 

   

   
 

This matrix shows that the probability of being in regime 1 is very low, close to 1%, and after 

entering regime 1, one can expect to enter regime 2 with a very high probability. Also, the probability 

of being present in the second regime is about 80% and it is 20% probable that it will enter the first 

regime from the second regime, which is due to the large fluctuations in the positions between these 

two financial assets. 
Finally, Figure 6 shows the relationship between the Gold and Bitcoin regimes in a period (nearly a 

year), the state between the two assets enters regime 2 (high dependence) and then returns to the first 

regime. Therefore, as can be seen from the transfer matrix of this pair in Table 9, the placement in 

different states between these two assets over time is relatively stable, and if the relationship between 

the two enters regime 2 (high dependence), it can be analyzed as follows: Most likely it will stay in 

this state for a long time. 
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Fig. 6. Smoothed probabilities for low and high dependence regimes BTC-GOLD 

5. Conclusions 
As the literature points out, the structure of dependencies between financial assets varies over time, 

and it is important to choose an appropriate model to examine this structure of dependencies over 

time. In the past, the value of this dependence was considered constant over time, but over time, 

different models were presented and showed that the correlation parameter can be obtained over time. 

Copula's method is one of these methods, which determines this by constructing a joint-distribution 

function between pairs of assets. Also, the Markov switching model, due to its memoryless nature, 

examines the issue of which mode of dependence it is in at any given time. That is, by combining this 

model with the Copula model, it can be concluded that at any time, it is possible to determine the 

relationship between different pairs of assets.  
This paper analyses the dependence structure and the regime change between Bitcoin and six other 

assets, including Gold and Oil, using six time-varying copula models with Markov switching 

(including MS-CC, MS-CT, MS-CN, MS-CG, MS-CRG, MS-CRC) and 11 separate copula model 

while (Niu, Xu & Xiong, 2023) only used a Markov-switching mixed-Clayton model(MS-CC) to 

check the correlation structure and regime changes. As we can see in this paper, the MS-CC model is 

not the optimal model for any of the investigated couples, and this can be because the data of the two 

papers are different or are analyzed at different times. 
 Our models reveal the dynamic dependence structure of the Crypto markets with two different 

regimes. Generally, the dependencies between the BTC and the six other assets are positive. Two distinct 

dependence regimes, named high dependence and low dependence, are verified by different dependence 

parameters across regimes. Results show that for Bitcoin-Ethereum, Bitcoin-Cardano, and Bitcoin-Gold 

pairs model MS-CT, for Bitcoin-Binance coin and Bitcoin-Ripple pairs MS-CRG and MS-CN for 

Bitcoin-Oil pair have the best performance. These results are almost confirmed by (Ji, Liu, and Cunado, 

2020), who used the combined model of Markov switching with copula to evaluate the risk spillover 

between stock exchanges of G7 member countries and for three pairs of these countries, the MS-CT 

model and for one MS-CN model was the optimal model to evaluate the correlation structure. Although 

the test data in the two papers are different, the results show that for different pairs, Markov switching 

models with copula have the best performance in any way and only their type changes for pairs. Some of 

these results can also be seen in (Zhu, Yamaka, and Sriboonchitta, 2016) , Unlike our paper (Gozgor, 

Tiwari, Khraief, 2019) used the Gumbel, the Rotated Gumbel, the Normal, the Student's t, and the 

Symmetrized Joe-Clayton models and the MS-CN model was optimized for their research. 
The estimated smoothing probabilities imply that the dependence structure between the BTC and 

the other assets changes over time. The status of a dependence regime is persistent and highly 

correlated with changes in tail dependence. Moreover, there is a probability that dependence relations 

between the BTC and ETH will enter a high dependence regime in a bullish market. 
It is also observed for the pairs of BTC-BNB, BTC-ADA, and BTC-XRP, which have entered 

regime 2 in periods, which in the bullish markets show the further ascent of these assets, and in the 

descending market as a sign of the further descent of these Altcoins. For the BTC-GOLD pair, it is 

also observed that they have a relatively stable relationship over time, and in the periods that they 
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enter regime 2, they have a similar Co-movement with each other, and it is possible to predict the 

future movement of these two assets when they are in regime 2. Finally, for the BTC-OIL pair, it is 

observed that over time, they are generally in regime two and do not have a strong relationship with 

which to predict the future correctly. This is because the regime changes between the two assets are 

increasing and fluctuating. 
Of course, the limitations of this method are important. To check the dependence structure and use 

the Markov switching model, there must be a reasonable relationship between the two studied assets. 

Therefore, in this paper, the correlation coefficient has been used to investigate this relationship. 

For future studies, it is suggested that the above model be used to investigate the effect of risk 

spillover between different assets and to examine the effects of risk spillover as well as the symmetry 

in the upside and downside risk spillover. This can be an interesting subject when calculating future 

risk for each market. 

Among the practical policies of this paper is to find the structure of dependence between financial 

assets and then use the Markov switching model to find different states between two assets so that it 

can predict the market trend for different assets and decide which one to Buy or sell a property. 

Furthermore, from the policymaker's point of view, some phenomena such as spillover ,contagion, 

or co-movement between the prices of different commodities are as important as the 

business/economic cycles and regime switching; it is due to rising commodity prices simultaneously 

cause high inflation in economy ( Ukraine Russia war impact on inflation). It is clear that dynamic 

dependency structure modeling can predict the mentioned phenomena with higher performance than 

static copulas, as elaborated in this paper. So, using a dynamic structure of dependency helps 

policymakers to better the decision-making process of the economy. 
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