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Abstract 

Cell Formation (CF) is the initial step in the configuration of cell assembling 
frameworks. This paper proposes a new mathematical model for the CF problem 
considering aspects of production planning, namely inventory, backorder, and 
subcontracting. In this paper, for the first time, backorder is considered in cell 
formation problem. The main objective is to minimize the total fixed and variable 
costs, including the machine related costs, intercellular movements, deviation 
between the levels of cell utilizations, inventory, backorder, and sub-contracting 
costs. The presented mathematical model is validated using GAMS software, and 
various test problems are solved by Genetic Algorithm (GA) and Discrete Particle 
Swarm Optimization (DPSO) algorithm. The performance of the algorithms is 
compared with the results obtained by the GAMS. The results demonstrate, there is 
no significant difference between the results of algorithms. Finally, some sensitive 
analyses are carried out to analyze the effects of backorder and inventory holding 
costs. 
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Introduction 

Due to today’s competitive conditions, companies should produce 
various types of products in small lot sizes. Group Technology (GT) is 
a manufacturing philosophy trying to produce efficiently by taking 
advantage of similarity of manufacturing processes. Cellular 
Manufacturing System (CMS) is a creative manufacturing strategy 
based on the GT concept. This method is employed to increase 
flexibility and efficiency of the manufacturing system, 
simultaneously. The advantages of using CMS include reduction of 
setup time, reduction of work-in-process and inventory, material 
movement reduction, improvement of quality, reduction in production 
lead time, and better supervisory control.  

Most production environments have to deal with variations in the 
operating parameters along the planning horizon, such as in the 
product demand. Manufacturers are also confronted with constraints, 
conditions, and costs, such as facility capacity limits (i.e., time), 
machine costs (i.e., purchase and maintenance), inventory holdings, 
backorder, and subcontracting. In this condition, the act of managing 
and controlling resources and balancing them among subsequent 
periods to minimize cost is known as Production Planning (PP). The 
main goal of production planning is to minimize the costs of 
production over the planning horizon, which include fixed and 
variable production costs, inventory, shortage, and subcontracting 
costs. The main restraints of the production planning problem include: 
(1) The inventory balance at each given time period, which is 
moderated by the inventory or shortage from a prior period, 
production, subcontracting, and demand; and (2) capacity limits.  

Majority of recent studies consider CMS and PP sequentially or 
independently (Chattopadhyay et al., 2013). However, considering the 
CMS and PP simultaneously is critical for manufacturers in real 
competitive production environments (Sakhaii et al., 2016). Variations 
in the production volume and mixture of products and introduction of 
new products lead to the necessity of integration of the CMS and PP 
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(Hassan Zadeh et al., 2014). In a CMS, the sequence of operations has a 
critical effect on material handling and the inter-cell and intra-cell 
movement costs. As an example, consider Figure 1 which demonstrates 
the effect of the operation succession on the material movements. 
Operations 1 and 3 of part 10 (P10) are processed on Machine 5 (M5) 
in Cell 1, and Operation 2 of P10 is processed on Machine 7 (M7) in 
Cell 2. Therefore, the processing route of Part 10 includes two inter-cell 
movements. Processing Part 4 in Cell 2 needs two intra-cell 
movements. Therefore, the design of the production system depends on 
the operational planning of the resources (Hassan Zadeh et al., 2014). 
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Figure 1.  The intra/inter-cell material movement. 

 
This paper addresses the Cell Formation Problem (CFP) which is 

extended by considering aspects of production planning such as 
inventory, backorder, and subcontracting. The proposed model 
determines the optimal inter-cell and intra-cell formation layout and 
the production planning simultaneously. The rest of this paper is 
organized as follows. A review of the CFP literature is provided in 
Section 2. Problem formulation is presented in Section 3. Section 4 
describes the proposed solution approaches. The parameters of the 
algorithms are tuned in Section 5. Verification of the proposed model 
and the performance of the developed solution algorithms are 
presented in Section 6. Finally, the concluding remarks and directions 
for future research are provided in Section 7. 
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Literature Review 

In this section, the literature related to cell formation problem is 
reviewed. Defersha and Chen (2006) addressed a comprehensive 
model and proposed a two-stage Genetic Algorithm (GA) to form the 
manufacturing cells. They attempt to minimize machine related costs, 
inter-cell material movement costs, subcontracting costs, and system 
reconfiguration costs. The proposed GA creates separate cells in the 
first step and enhances the initial solution in the second step. Rafiee et 
al. (2011) addressed a mathematical model for the integrated cell 
formation to minimize the sum of machine related cost, cell 
reconfiguration cost, maintenance, material handling, and 
subcontracting costs, as well as replacement cost of defective parts. 
The model considers alternative routes, machine capacity constraints, 
cell size constraints, and machine breakdowns. Safaei et al. (2008)  
proposed a mixed integer programming model for the CF problem. 
The objective function was to minimize the machinery fixed and 
variable costs, inter-cell and intra-cell movements, and 
reconfiguration costs. Dalfard (2013) proposed a nonlinear 
mathematical model for a dynamic CF problem to minimize the 
number and average length of inter-cell and intra-cell movements. 
They combined simulated annealing and branch-and-cut algorithm to 
solve the proposed model.  

Krishnan et al. (2012) proposed three steps for cell layout problem. 
In the first step, they tried to group the machines into cells in order to 
minimize inter-cell and intra-cell movements costs. In the second step, 
two heuristic methods were used to assign the parts to the cells based 
on the first step solution. Finally, a GA is employed to determine the 
optimum inter-cell and intra-cell layouts. Wu et al. (2008) employed 
hybridization techniques which combine SA and GA algorithms to 
solve their proposed model. Durán et al. (2010) combined PSO with a 
data mining technique to solve the CF problems.  

Shirzadi et al. (2017) addressed a new multi-objective model in CF 
by assuming the demand under fuzzy condition. The model minimizes 
machine related costs, inter-cell movements costs, subcontracting, and 
also balancing the intracellular workload. Delgoshaei and Gomes 
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(2016) proposed a new mathematical model for short-term scheduling 
in a dynamic condition to determine the optimum schedule of 
manufacturing plant and outsourcings. The results demonstrate that 
uncertainty of system costs have a significant effect on the parts' 
routing. Eguia et al. (2017) addressed an integer linear model in CMS 
by considering alternative routing, multiple time horizons, and cell 
load variation. They considered cell load variation in two phases. In 
the first, they considered the machine cell design to assign machines 
into machine cells, and in the second, the cell loading has been 
considered to determine the routing mix and the allocation of tools. 

Chang et al. (2013) solved the CF problem while considering 
alternative routing by a Tabu search algorithm in two steps. In the first 
step, CF and layout problems are simultaneously solved, and in the 
next, the machine layout for each cell is formed. Tavakkoli-
Moghaddam et al. (2012) proposed a mathematical model for multi-
criteria scheduling problem. They used the scatter search method to 
solve the proposed model. Mahdavi et al. (2010) proposed a new model 
to consider CF and cell layout problems simultaneously. They aimed to 
minimize costs of intra-cell forward and backward movements and 
inter-cell travel distance. They proposed weights for inter-cell and intra-
cells movements and considered the weight of inter-cell movements 
more than intra-cell movement. Mahdavi et al. (2013) attempted to 
minimize the number of void and exceptional elements in a machine-
part-worker assignment matrix. They considered the ability of workers 
in performing various jobs in the proposed mathematical model. 
Rezazadeh and Khiali-Miab (2017) proposed a new model in CMS to 
minimize the costs, enhance the quality of parts, and improve the 
reliability of the designed system. They used a cost method as a logical 
relation in order to consider the reliability. Moreover, they utilized a 
two-layer GA to obtain the optimum solutions.  

Azadeh et al. (2017) consider human factors in designing dynamic 
cellular manufacturing system. The main objective is to minimize the 
total costs, inconsistency in the decision-making style of operators, 
and the cell load variation. Rabbani et al. (2017) proposed a bi-
objective model in dynamic cell formation problem by considering the 
total cell load variation and some fixed and variable costs. They 



824   (IJMS) Vol. 10, No. 4, Autumn 2017 

applied a Multi-Objective Scatter Search (MOSS) to find local Pareto-
optimal frontier. Moreover, Mahdavi et al. (2012) proposed a 
mathematical model to solve the CF and operator assignment 
problems using a goal programming approach.  

Table 1. Summary of Related Literature. 

Articles 
Intra-
cell 

layout 

Inter-
cell 

layout 
Outsourcing

Setup-
cost 

Inventory Backorder 
Cell 
load 

variation 

Defersha & 
Chen (2006) 

       

Saidi-
Mehrabad & 
Safaei (2007) 

       

Rafiee et al. 
(2011) 

       

Tavakkoli-
Moghaddam et 

al. (2012) 
       

Chang et al. 
(2013) 

       

Mahdavi et al. 
(2013) 

       

Hassan Zadeh 
et al. (2014) 

       

Delgoshaei & 
Gomes (2016) 

       

Sakhaii et al. 
(2016) 

       

Shirzadi et al. 
(2017) 

       

Rabbani et al. 
(2017) 

       

Rezazadeh & 
Khiali-Miab 

(2017) 
       

Azadeh et al. 
(2017) 

       

This study 
       
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Table 1 illustrates the features of some related literature of the cell 
formation problem. As mentioned in the literature section, the cell 
formation problem with regard to production planning has not been 
considered in the previous studies. As the best of our knowledge, for 
the first time, in this paper, the effects of inventory holding and 
backorder costs on cellular manufacturing system have been 
considered.  

Problem Definition 

In this section, the proposed mathematical integrating CFP and PP 
model is presented. The proposed model makes contributions to CFP 
in two ways. First, it integrates cellular manufacturing problem with 
production planning problem. For the first time, the backorder is 
considered in the CFP. Second, the effect of inventory holding and 
backorder costs is demonstrated. In the proposed model, several parts 
should be produced and each part requires a number of operations 
which can be processed on different machines. Each part’s demand in 
each period is known. Machines are multi-process with limited 
capacities; that is, by considering available tools, machines can 
process various operations. Moreover, the processing time of each 
operation on each machine is known. The maintenance cost of 
machines is known and constant. The material handling cost is 
considered to be independent of the traveled distance. Subcontracting 
is allowed with a specified cost; the total or a portion of the demand 
can be subcontracted. The workload assigned to machines should be 
balanced within cells based on the time spent on the parts. The extra 
inventory and delayed order are allowed. The setup cost for each part 
is considered but machine installation and breakdown times are 
ignored. Other attributes of the proposed model are summarized as 
follows: 
 The demand of each part type is known per period. 
 Machines' capacities are known and constant. 
 The processing time for all the operations on each machine type is 

known. 
 Machine maintenance and purchase costs are known and constant.  
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 The operation cost for each machine type per hour is known and 
constant. 

 Machines can be procured to certain numbers and with a constant 
cost at the beginning of each time period.  

 The batch size of parts is known and constant and movement cost 
for each part type is known and deterministic. 

 The subcontracting of parts is allowed. Thus, total or portion of 
demand can be subcontracted with a known cost. 

 The minimum and maximum cell sizes are given. 
 The inventory holding and backorder are allowed with known 

costs. Therefore, the demands can be satisfied in the preceding or 
succeeding periods. 

 The cost of setup operation required to produce each part type is 
known and constant.  

Mathematical Model 

Indices 

c Index of manufacturing cells (c=1,…,C) 
m Index of machine types (m=1,…,M) 
p Index of part types (p=1,…,P) 
h Index of time periods (h=1,…,H) 
j Index of operations belonging to part type p (j=1,…,Op) 

Parameters 

phD  Demand for part p in period h 

jpma  Binary variable that is equal to 1; if operation j of part type p can 
be conducted on machine type m, and is equal to 0 otherwise. 

jpmt  Processing time of operation j of part type p on machine type m 

UB  Maximum cell size 

LB  Minimum cell size 

pS  Subcontracting cost for part type p 

mT  Time capacity of machine type m in each period 
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m  Purchase cost of machine type m 

mM  Maintenance cost of machine type m 

m  Operation cost per time unit per machine type m 

p  Inventory holding cost for part type p 

pA  Setup cost of part type p 

p  Moving cost for part type p  

p  Backorder cost for part type p 

p  Batch size for part type p 

L  A sufficiently large positive number 

S  Cost for each variation in cell load 

 
Decision variables 

jpmchX  1, If operation j of part type p is performed by machine m in 
cell c in period h; 0 otherwise. 

,p hI   Inventory level of part type p kept in period h, and carried 
over to period h+1 

,p hI   Backorder level of part type p in period h 

phSC  The quantity of part type p subcontracted in period h 

phZ  1, If part type p is planned to be produced in period h; 0 
otherwise 

mchN  Number of machines type m required in cell c in period h 

phQ  
Production volume of part type p in period h 

jpmchW  The workload associates with operations of part type p for 
machine m in cell c in period h 

jpchW   Average intra-cell workload associates with operations of 
part p in cell c in period h 

'
phy

 
Auxiliary variable;1 if ph 0; 0 otherI wise
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LB N UB
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  /jpmch jpm ph jpmch mw t Q X T , , , ,j p m c h  (12) 

1 1

/ ( ) 
M M

jpch jpmch mch mch
m m

w w N N
 

 
  
 
  , , ,j p c h  (13) 

 ',   0     ,    0,1  , ,ph ph ph ph phB I Z y  
 

  0,1                  j,p,m,c,hjpmchX  
,p h  (14) 
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Equation (1) is the objective function. The first eight terms in 
Equation (1), respectively, represent machine purchase, maintenance, 
operating, material handling, inventory, backorder, setup, and 
outsourcing costs. The last term is the cost corresponding to the 
deviation of each machine workload from the cell average over the 
planning horizon. The cell load variation in single route CMS is 
calculated as the difference between the workload on the machine and 
the average load of the corresponding cell (Venugopal & Narendran, 
1992). This is considered in the objective function in order to improve 
the balance of the workload between cells and smoothen the materials 
flow. 

Equations (2) and (3) ensure assignment of each operation to the 
cell and the machine which has the required tool, if the part is to be 
produced at the given period. Equations (4) and (5) ensure machine 
capacity constraints and the demand is satisfied. Equations (6) to (9) 
are the inventory balance relationships between two consecutive 
periods. If 0phI   , the result is a surplus in inventory which incurs 

holding cost; and if 0phI   , a shortage of inventory is implied leading 

to backorder cost. The Amount of phI  is zero in the last period of 

planning horizon. Equations (8) and (9) ensure that the two variables 

phI   and phI   do not simultaneously get a positive value. Equation (10) 

ensures assignment of each operation to a machine by considering the 
required tools. Equation (11) reflects the upper and lower bounds of 
the cell size. Equations (12) and (13) identify the workload for each 
machine type in each cell and the average intra-cell workload, 
respectively. Equation (14) represents the binary and non-negativity 
integer requirement of the decision variables. 

Linearization  

Equation (4) and the third term of Equation (1) can be linearized via 
introducing a non-negative variable as  jpmch ph jpmchQ X  and the 

following constraint set: 
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   jpmch jpmchL X 
 

, , , ,j p m c h  (15 a) 

   jpmch phQ 
 

, , , ,j p m c h  (15 b) 

 1  jpmch ph jpmchQ L X   

 

, , , ,j p m c h  
(15 c) 

0  jpmch 
 

, , , ,j p m c h  (15 d) 

The fourth term of Equation (1) can be linearized by introducing 

two non-negative variables jpch   , jpch and also a binary variable jpch . 

So, the term ( 1 )
m 1 m 1

M M

j pmch jpmchX X
 

   is replaced by jpc jpc    

through adding Equation (16). 

( 1 )
m 1 m 1

M M

j pmch jpmch jpch jpchX X   


 

  
 

, , ,j p c h  (16 a) 

       jpch jpchL    , , ,j p c h  (16 b) 

 1  jpch jpchL     , , ,j p c h  (16 c) 

 0,1   jpch   , , ,j p c h  (16 d) 

Where, L is a large positive number. 

Determine Complexity of Problem  

As computation point of view, the proposed model is complex. 
Clearly, the complexity of the problem is positively correlated to the 
number of machines, parts, operations, and length of the planning 
horizon. In the proposed model, each part type requires j operations 
and each operation can be processed on k alternative machines. 
Supposing that all part types have demand in all periods, thus, each 

part can be produced through jK alternative plans; for all parts, in each 

period, there are 
pjk   alternative plans. Thus, there are 

p Hjk  
alternative to allocate part-operations to machines. To estimate the 
solution space size of the proposed model, we assume that demand of 
each part type is either satisfied by in-house production, or by 
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completely subcontracting the production. Therefore, each part type 

can be produced through 1jK   alternative plans, and then there are

1
p Hjk   alternative plans for parts in the whole planning horizon. 

Also, we assume the inventory and backorder are allowed. Therefore, 

each part type can be produced through 1 ( 1)jK H   alternative 

plans. Accordingly, in the easy case, there are
P Hjk H   allocation 

combinations, in which 
P Hjk H   +W and W is a polynomial as: 

 
1

      
H P H P ij i

i

H P
W K H

i

  



 
  

 
  

Solution Approach 

Cell formation problem is an example of a non-polynomial-hard (NP 
hard) problem (Rabbani et al., 2017). Thus, these problems especially 
large-sized ones, are hardly solved using exact solutions. Meta-
heuristic algorithms are commonly used to achieve high-quality 
solutions for these types of problems. In this study, GA and DPSO 
algorithms are employed. To validate the model and the meta-heuristic 
algorithms, test problems are solved using GAMS software, GA, and 
DPSO algorithms and a comparison is drawn between them. As 
mentioned in the literature review, GA is commonly used to solve the 
CFP; we also employed the DPSO algorithm to compare its 
performance with GA algorithm. 

Genetic Algorithm 

Genetic algorithm (GA) was introduced by Holland (1975). GA is 
an evolution-based computation technique (Yousefi et al., 2017). It 
operates on a population of individuals, each of which presenting a 
possible solution to the optimization problem. GA attempts to 
generate improved or suitable individuals, that are solutions, by 
combining the best features of the current genes by the natural 
selection mechanics and genetic operators. Actually, GA searches the 
feasible space to find optimal or near-optimal solutions (Rabbani et 
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al., 2016). In this paper, to employ GA, four principal factors are 
considered which are explained in the followings. 

Solution chromosome 

The chromosome structure represents a feasible solution. Each 
chromosome is comprised of the two following genes for each period.    
1. The matrix Ejpm is the related gene to assign operations to the 
machines. It is designed for every period and means operation j for 
part p is performed by machine m when the corresponding element 
equals to 1.  For example, the term E123=1 means Operation 1 of Part 2 
is processed on Machine 3. Table 2 shows the micro structure of a 
chromosome in the proposed GA, where D=max{ k | k=||Kjp||} with 
parameter ||Kjp|| as the set of alternative machines for operation j of 
part p, Q(i) is production volume of part type i, SC(i) is subcontracting 

of part i, and ( )I i  and ( )I i  are backorder and inventory of part i, 

respectively. The sign ♯ represents the number of the cells in which 
the operation is processed. This matrix and the value of D yield the 
value of the binary variable Xjpmch. 

Table 2. Micro Structure of a Chromosome in the Proposed GA. 

Part 1 Part 2 … Part m 

Q(1) Q(2)  Q(m) 

SC(1) SC(2) … SC(m) 

 (ሺmିܫ ାሺm) orܫ … (ሺ2ିܫ ାሺ2) orܫ (ሺ1ିܫ ାሺ1) orܫ

Op.1 Op.2 … Op. j Op.1 Op.2 … Op. j … Op.1 Op.2 … Op. j 

Cell 
numbe

r ♯ 

Cell 
numbe

r ♯ 

… Cell 
numbe

r ♯ 

Cell 
numbe

r ♯ 

Cell 
Numbe

r ♯ 
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 ௝௣஽ܧ ଶ௣஽ܧ ଵ௣஽ܧ … ௝ଶ஽ܧ … ଶଶ஽ܧ ଵଶ஽ܧ ௝ଵ஽ܧ … ଶଵ஽ܧ ଵଵ஽ܧ

 

2. Matrix  h

m c
N


consists of genes indicating the number of 

available machines in each cell in period h. Elements of matrix [N] are 
calculated by Equation (17). 
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JpP

jpm jpmch ph
p j

mch
m

t X Q

N
T

 

 
 
 
 
 
 


 

, ,m c h  (17) 

Initial solution. 

As mentioned previously, GA is a population-based algorithm, and 
requires an initial population to conduct the evolution process. In the 
proposed GA, the initial population is generated in a random fashion; 
for each part type in each period, Qph and SCph are drawn from the 

uniform distribution 
1

(0, ).
H

phh
U D

  In the next step, the parts’ 

operations are randomly assigned to available cells. Then, with respect 
to the parameter ajpm, the parts’ operations are randomly assigned to 
available machines. Finally, the inventory or backorder values are 
calculated using Equation (6). 

Improved GA operators 

To generate new solutions from those existing in the current 
generation, genetic operators are used. Since a matrix format is used 
as the chromosome structure in this paper, the three well-known 
genetic operators, crossover, mutation, and inversion are applied in 
two approaches called columnar and linear. In each iteration, an 
operator is applied to the matrix Ejpm of the given chromosome, and 
then the other variables related to Ejpm are updated. The cases of 
columnar and linear are described in the followings.  

1. Columnar. In this approach, two rows of the matrix are chosen 
arbitrarily. Then, the operator is applied to the selected columns. For 
instance, in Figure 2, Rows 3 and 4 of matrix Ejpm are chosen and then 
the inversion operator is applied. 

0 0 0 0 
0 0 0 0 
1 0 1 1 
0 1 0 0 
0 0 0 0 
0 0 0 0 

 0 0 0 0 
0 0 0 0 
1 1 0 1 
0 0 1 0 
0 0 0 0 
0 0 0 0 
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Figure 2. Inversion operator in the horizontal direction. 

2. Linear. In this approach, two columns of a matrix are chosen 
arbitrarily. Then, the operator is applied to obtained new columns. For 
example in Figure 3, the result of using inversion operator on the 
Columns 3 and 4 is shown on the right side. 

 

 

1 0 0 0 

0 0 0 1 

0 1 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

 

 

1 0 0 0 

0 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
0 0 0 0 

 

Figure 3. Result of employing inversion operator. 

  

Arithmetic crossover operators. 

Arithmetic crossover operators, implemented in Arkat et al. (2007), is 
used to produce two offspring by combining two selected parents, as 
shown in Equation (18). 

1 1 2

2 1 2

 
              0 1,   1

C aP bP
a b a

C bP aP

 
     

 (18) 

Where, C1 and C2 are offspring of P1 and P2, and (0,1)a U . To 

obtain the necessary integer representation of the variables, the 
Equation (19) is used: 

 

            
       

            

            

ij ij ij ij

ij ij

ij ij ij ij

a P b P if P P
a P b P

a P b P if P P

    
 

 (19) 

Flow chart of the proposed GA is demonstrated in Figure 4, and the 
pseudo code is presented in Figure 5.  
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Figure 4. Flow chart of proposed GA. 

 
Initialize parameters F, T 
Initialize counters p=1(population counter), t=1(generation counter) 
Do 

Generate generation t as F feasible solution ଵܺ
௧ ,	ܺଶ

௧ ,…,	 ௙ܺ
௧                   

If  Nmch > UB  Regenerate generation 

population fitness values is calculated as F ( ଵܺ
௧ሻ, F (ܺଶ

௧ሻ,…, F ( ௙ܺ
௧ሻ 

population fitness is normalized as Z1,Z2,…,Zf  where ܼ௜ ൌ
ி൫௑೔

೟൯ିఓ೟
ఋ೟

 

If  Zi ൑ 0 select mating pool of solution Xi 
Do (generate offspring for new generation) 
     Select two chromosomes of the present mating pool	 
      Operate crossover of choose chromosome 
      Choose one chromosome of the previous population 
      Operate mutation of selected chromosomes 
      If  Nmch > UB omit the selected chromosomes 
  End if 
Loop until ሺ݌ ൑  ሻܨ
t=t+1 
Loop untilሺݐ ൑ ܶሻ 

Figure 5. Pseudo code of the GA algorithm 
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Particle Swarm Optimization (PSO) 

PSO is an evolutionary computation technique formulated by 
Kennedy and Eberhart (1997). In this algorithm, the best population in 
the swarm influences the communal performance. The particles move 
with a convincing constitution and discover the global best answer 
after certain iterations, because PSO is a population-based move with 
convincing algorithms and influential evolutionary particles in this 
algorithm to adopt the leadership of the group, which is the best of 
cost. PSO has received a lot of attention from researchers due to its 
considerable ability in solving large-scale optimization problems. 

 Discrete Particle Swarm Optimization (DPSO) 

DPSO is different from PSO in two ways. The first difference is that 
in the DPSO, particles of the algorithm include several binary 
variables. The second difference is that in the DPSO algorithm, the 
velocity should be changed considering the value of probability. Let 

1 2( , ,..., )t t t t
i i i iDP p p p and 1 2( , ,..., )t t t t

g g g gDP p p p be the local best (pbest) 

and global best (gbest) at iteration t, respectively. the velocity of each 
particle is calculated by Equation (20): 

( 1 )
1 1 2 2( ) ( )t t t t t t

id id id id gd idv v c r p x c r p x     (20) 

Where, C1 and C2 (random uniform number in [0, 1] interval) are 
the knowledge learning factor and social learning factor, respectively. 
Moreover, r1 and r2 are the randomly generated vectors (Kennedy et 

al., 2001). t
idv is the velocity of particle i in iteration t in direction d; 

t
idP is the best prior position of particle i in iteration t at direction d; 
t

gdP is the best foregoing position among all the particles in iteration t 

at direction d. By considering the value of  0,1jpmchX  , each particle 

alters its velocity and acquires a new velocity. In DPSO, the particles 
are presented as binary variables. For the value of velocity for each 
particle, Kennedy et al. (2001) declared that the value of velocity in 
each particle is between 0 and 1, and represented Equation (21) which 
calculates as follow: 
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   
1

  
1 exp

t
id t

id

s v
v


 

 (21) 

Where, ( )t
ids v announces the probability of taking value 1 by bit 

t
idx . To prevent ( )t

ids v value taking 0 or 1, a fixed maxV is employed to 

constraint the range of t
idv  which is t

idv   ,max maxV V   . Usually  maxV is 

set to 4. In this paper, the structure of the solution representation used 
in DPSO is the same as the structure of the chromosomes in GA, and 
the methods discussed for GA are also applied in DPSO. The flow 
chart of the proposed DPSO algorithm is shown in Figure 6. 

 

Figure 6. Flowchart of the proposed DPSO algorithm.  

Parameter Tuning 

Trial and error attempts are commonly used to find optimum parameter 
sets of GA and DPSO algorithms. The efficient parameter set can 
improve the ability of meta-heuristic methods (Rabbani et al., 2016). 
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Generally, the primary parameters of GA are population size (Npop), 
crossover probability (p-crossover), and mutation probability (p-

mutation). In the DPSO algorithm, 1 2,C C  are cognitive and social 

parameters with a positive value, and w is called inertia weight. Taguchi 
methods are structured statistical method used in this paper for tuning 
these parameters. The obtained value of the parameters are shown in 
Table 3. 

Table 3.  Tuned Parameters of Algorithms. 

Numerical Experiments 

Eleven test-problems are used to validate the proposed model. Table 4 
shows the general assumption about the parameters used to generate 
these test-problems. The complete results for two test-problems solved 
by GAMS 24.1 software are presented in this section. Also, the 
performance of the proposed GA and DPSO algorithm is compared 
with GAMS. The GA and DPSO algorithms are coded in MATLAB 
and all computations are run on a PC with Intel Core Duo II 2.6 GHz 
processor and 4 GB of RAM.  

Table 4. Parameter Value Ranges Used in Generating the Test-Problems. 
 

Parameter Value Parameter Value 

Dph U (0, 1000) U (20, 50) 

U (1000, 2000) U(10,15) 

U (1, 10) Ap U (100, 200) 

Mm U (5, 20) U (10, 30) 

 U (10, 40) U (10, 30) 

ajpm 0 or 1 2 

pλ

m p α

m

p

βp pS

jpm
m

a

GA  DPSO 
Parameter Value  Parameter Value 

Npop 200  Npop 250 

p-crossover 0.6  
1C  2 

p-mutation 0.5  
2C  3 

   w 1 or 2 
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Test-problems 2 and 4 are described in more details to clarify the 
solution procedure. The attributes of test-problems are mentioned in 
Table 11. Table 5 includes the information about Test-problem 2 
consisting of three part types, four machine types, and two periods. 
The processing time of each operation for all part types of Test-
problem 2 is presented in Table 5. Tables 6, 7 and Figure 7 illustrate 
the optimal solution of Test-problem 2. As shown in Figure 7, 
Machine type 2 should be duplicated in Cell 1 in Period 1. The first 
and second operations of Part 1 are processed in Cell 1, and the third 
operation is processed in Cell 3. All the operations of Part type 2 are 
processed in Cell 2; and all operations of Part 3 are processed in Cell 
3. In Period 2, the first and second operations of Part type 1 are 
processed in Cell 1, the third one is processed in cell 2, and all the 
operations of PART type 2 are processed in Cell 2. The total cost 
elements are illustrated in Table 6. As shown in Table 7, the demand 
for Part type 3 in Period 2 is satisfied in Period 1 by producing 300 
units. Thus, Part type 3 is not produced in Period 2. Generally, 
because inventory cost is low, most of the demand of the Period 2 is 
fulfilled in Period 1.  

Table 5. Data of Test-Problem 2. 

Machine 
info 

   P1    P2    P3   

௠ܶ ߙ௠ ܯ௠ ߚ௠  1 2 3  1 2 3  1 2 3 

500 1800 50 9 M1 0.81    0.78  0.84    0.46 

500 1500 60 7 M2  0.85 0.47   0.56   0.87 0.59  

500 1800 80 5 M3 0.73 0.93 0.48    0.79   0.57  

500 1700  50 9 M4     0.81 0.78   0.25  0.31 

Dph   Period1 300    600    200  

   Period2 350    700    500  

  ௣      35    25    20ߚ

  ௣      130    140    150ܣ

ܵ௣      13    12    15  

  ௣      14    13    14ߛ

 
λ p       40    39    30  

C=3 UB=4            
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Table 6. Cost Elements in Optimal Solution of Test-Problem 2. 

ܼ∗ 
Machine 
constant

Machine 
variable 

Inter-cell 
moves 

Inventory Backorder Subcontracting Setup 

Deviation 
between 

cells 
utilization 

49835 14150 25450 1025 3710 0 4690 690 120 

 
 

Table 7.  
Optimal Solution of Example 2. 

 h=1   h=2   
 P1 P2 P3 P1 P2 P3 

Qph 450 250 300 450 430  

Sph 200 120  50   

Iph 100 70 100    
Dph 550 300 200 600 500 100 

 
  

 

   C1 C2 C3 
   P1 P2 P3 
C1 2 M2 1,2   
C2 1 M1  2,3  
 1 M3  1  
C3 2 M1 3  3 
 1 M4   1,2 

   C1 C2 
   P1 P2 
C1 2 M2 1  
 1 M1 2  

C2 1 M3  3 

 1 M1  2 
 1 M4 3 1 

(a) (b) 

 Figure 7. Optimal cell configuration of example 2: (a) period 1 (b) period 2. 

 
Table 8 shows the information about Test-problem 4 consisting of 

five part types, five machine types, and three periods. Tables 9, 10, 
and Figure 8 show the optimal cell configuration of Test-problem 4. 
As shown in Table 10, a portion of Part type 4’s demand in Period 3 is 
satisfied by producing 600 units and subcontracting 120 units in 
Period 2, and the other portions are satisfied by producing 350 units 
and subcontracting 50 units in Period 3. Furthermore, 60 units of the 
demand of Part type 3 in Period 2 are produced in Period 3 as 
backorder demand. On the other hand, the inventory of Part type 2 in 
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Period 1 is 440 units, which is held in Period 2 to satisfy the demand 
of Period 2. Generally, due to the low inventory cost, a large portion 
of the demand of all part types is satisfied in Periods 1 and 2. Table 9 
illustrates breakdown structure of the costs of Test-problem 4. 

Table 8. Data of Test-Problem 4. 
Machine info P1    P2    P3    P4    P5   

௠ܶ ߙ௠ ߚ௠  1 2 3  1 2 3  1 2 3  1 2 3  1 2 3 
500 1900 5 M1  0.75  0.58 0.65 0.39   0.56 0.56 0.81   0.26  

500 1600 8 M2  0.79     0.92 0.56 0.38   0.76 0.41 0.63  

500 1700 7 M3 0.71  0.54  0.74     0.48     0.59 

500 1800 6 M4   0.66 0.8   0.14         

500 1200 9 M5 0.64     0.91  0.48   0.67 0.64 0.12  0.75 

௣௛  Period1 350   800ܦ   210   0   220  

  Period2 420   720   650   220   0  

  Period3 410   0   400   900   300  

  ௣     30   20   20   40   45ߚ

ܵ௣     18   13   17   15   25  

  ௣     15   11   25   17   13ߛ

λ p  
    

41   40   30   36   34 
 

௣ܣ     150   140   130   160   170  

C=3 UB=4              

   

Table 9. Cost Elements in the Optimal Solution of Test-Problem 4. 

ܼ∗ 
Machine 
constant 

Machine 
variable 

Inter-
cell 

moves
Inventory Backorder Subcontracting Setup

Deviation 
between cells 
utilization 

106380 24500 47230 875 23390 1800 6775 1630 180 
 

Table 10. Optimal Solution of Test-Problem 4. 

 h=1      h=2      h=3     
 P1 P2 P3 P4 P5  P1 P2 P3 P4 P5  P1 P2 P3 P4 P5 
Qph 350 915 210  220  390 280 590 600 300    460 350  
Sph  325        120      50  
Iph  440     410  -60* 500 300       
Dph 350 800 210 0 220  420 720 650 220 0  410 0 400 900 300 
* Backorder 
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   P2 P1 P3 P5 

C1 2 M2 1,2 1   

 1 M4 3 2,3   

C2 2 M1   1,3 2,3 

 1 M3   2 1 

   P1 P2 P3 P5 P4 

C1 1 M2 1  3   

 2 M5 2  2 1,3  

C2 3 M4  1,3 1 2  

 1 M3 3 2   1 

C3 1 M1     3 

 1 M5     2 

     P3 P4 

C2 2 M1 1,2,3  

C3 1 M3  1 

 1 M2  3 

 1 M5  2 

(a) (b) (c) 

Figure 8. Optimal cell configuration of Example 4: (a) Period 1 (b) Period 2 (c) Period 3. 

   

To compare the results of the meta-heuristic method, 11 test-
problems were solved using GA, DPSO, and GAMS. The obtained 
results are shown in Table 11. Because of the enormous number of 
constraints and variables, GAMS is not able to solve some of test 
problems within a reasonable time. The problems that GAMS cannot 
solve in a span of 4 hours are Test-problems 6, 9, 10, and 11. The 
results show that the GA and DPSO have the ability to find rational 
solutions with respect to solutions obtained by GAMS. Figures 9 and 
10 illustrate the comparison between the methods in terms of CPU 
time and the objective function value; the performances of GA and 
DPSO are similar and can compete with the GAMS software, 
especially in large-sized problems. 

Table 11. Comparison of GA and DPSO Algorithms with GAMS. 
Test 
NO. 

Example info 
(Part×Machine, 

Cell, Period) 
 

GAMS  GA  DPSO 
Objective  CPU 

Time 
(sec) 

 Objective  CPU 
Time 
(sec) 

 Objective CPU 
Time 
(sec) 

1 2ൈ2,C=2,H=2 14150 65  15510 35  15602 32 

2 3×4,C=3,H=2 49715 440  52690 174  52684 164 

3 4×3,C=3,H=3 95423 442  101148 185  101213 191 
4 5×5,C=3,H=3 106380 1256  112475 464  112521 451 
5 8×6,C=3,H=2 412305 1568  438123 410  438326 387 
6 8×7,C=3,H=3 N/A  652498 487  652365 498 
7 9×8,C=3,H=2 658974 4532  700004 651  700125 647 
8 10×10,C=3,H=2 680616 6278  721453 912  721536 903 
9 12×10,C=3,H=2 N/A  785423 1356  785514 1381 

10 20×15,C=3,H=2 N/A  812632 3845  812456 3805 
11 20×20,C=4,H=2 N/A  954127 4785  953689 4852 
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Fig. 9. Co 

mpa Ring 
Figure 9. Comparing objective function value between GAMS, GA and DPSO. 

 

 
Figure 10. Comparing CPU time of GAMS, GA and DPSO.  

Sensitivity Analysis  

Most of the industrial plants cope with inventory and backorder whose 
costs are decisive in production planning. Thus, in the proposed 
model, inventory and backorder are considered. To further explore the 
effects of the inventory and backorder costs on the optimum solution, 
two sensitivity analyses on inventory holding and backorder costs are 
conducted respectively. The impact of the inventory holding and 
backorder costs on the overall costs are analyzed. These analyses are 
based on Test-problem 4. To conduct the sensitivity analyses, in each 
step, 20 units are added to the inventory holding and backorder costs 
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respectively. This procedure is continued in six steps and the results 
are illustrated in Table 12 and Figure 11.  

As shown in Table 12, the first step for the analysis of the inventory 
holding cost involves increasing the objective function value by 1130 
units. Tables 13 and 14 demonstrate the optimal solution for the first 
step of the inventory analysis. As shown in Table 14, by increasing the 
inventory holding cost, the amount of the inventory held in each period 
decreases. Moreover, increasing the inventory holding cost results in 
fulfilling the demands of each part type in the current or subsequent 
period rather than prior periods. Moreover, as it can be inferred from 
Table 13, the setup and machine-related costs such as constant and 
variable costs are increased compared to the initial situation, which led 
to an increase in the objective function value. As it can be inferred from 
Table 12, by increasing backorder cost, the amount of objective 
function is increased. Moreover, for all part types the amount of the 
backorder is decreased, which leads to the satisfaction of the part types 
in the current or the prior periods rather than the subsequent periods. 
For the inventory holding sensitivity analysis, the amount of setup cost 
is increased. Moreover, by increasing the amount of backorder cost, the 
amount of subcontracted parts are increased. Because of avoiding 
backorder, a number of parts which should be produced at the current 
time are increased and moreover, due to machine capacity, the amount 
of subcontracted parts is increased. Subsequently, this leads to an 
increase in objective function value. Figure 11 demonstrates the 
changes in the objective function by increasing the unit cost of 
inventory and backorder.  

Table 12.  The Results of Sensitivity Analysis. 

The value added 
to inventory cost 

( p ) 

Amount of 
change in cost 

function  ( z )

z

p




 
The value added 
to backorder cost 

(
p ) 

Amount of 
change in cost 

function  ( z ) 

z

p




 

20 1130 56.5 20 874 43.7 

40 1920 48 40 1356 33.9 

60 2560 42.67 60 1954 32.56 

80 3050 38.13 80 2432 30.4 

100 3470 34.7 100 2654 26.54 

120 3640 30.33 120 2784 23.2 
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Figure 11. Sensitivity analysis of inventory and backorder cost. 

Table 13.  Cost Structure of Test-Problem 4 When the Unit Inventory Cost Is Increased by 20. 

ܼ∗ 
Machine 
constant  

Machine 
variable  

Inter-cell 
movement 

Inventory Backorder Subcontracting Setup  
deviation 
between 

cells 
107510 29530 57325 1025 10150 1800 5660 1780 240 

 

Table 14. Optimal Solution of Test-Problem 4 When the Unit Inventory Cost Is 
Increased by 20. 

 h=1     h=2     h=3     

 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

Qph 350 950 210  220 420 400 590 500  310  460 510 300 

Sph  170       110  100     

Iph  320      -60* 390       

Dph 350 800 210 0 220 420 720 650 220 0 410 0 400 900 300 
* Backorder 

 
In this paper, for the first time, backorder is considered in the cell 

formation problem. In order to obtain the significance and effect of 
considering backorder in cell formation problem, the obtained results 
of this paper are compared with obtained results of Rabbani et al. 
(2017) where backorder is not considered. The results demonstrate 
that by considering reasonable value for backorder cost, the amount of 
objective function is less than the amount of objective function 
obtained by Rabbani et al. (2017). Finally, comparison of the results 
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of this paper and Rabbani et al.'s (2017) demonstrates that considering 
backorder can improve the amount of objective function and enhance 
the flexibility of production planning. 

Conclusion 

In this paper, a new mathematical model for the cell formation 
problem by integrating the production planning problem is proposed. 
The proposed model covers important manufacturing features 
including inventory holding, cell load variation, and especially 
backorder. The proposed model can determine the optimum cell 
formation and production planning, simultaneously. The objective 
function of the proposed model consists of minimizing the total fixed 
and variable costs including the purchasing, operation, and 
maintenance costs, inter-cell movement costs, minimizing the 
backorder, inventory and subcontracting costs, and minimizing the 
costs of deviations between the levels of cell utilization. The proposed 
model was validated by applying it to test-problems using GAMS 
software. Since, this problem is an NP-hard problem, finding the 
optimal solution is impossible in large-scale problems. Thus, GA and 
DPSO algorithms are employed to solve the proposed model. The 
computational results demonstrated that GA and DPSO have the 
ability to find near-optimum especially when GAMS fails to obtain 
any solution for large-size test-problems. The results demonstrated 
that GA had a relatively better performance than DPSO.  

Besides the innovation in the proposed model, for the first time, the 
effects of inventory holding and backorder costs on cellular 
manufacturing problem have been considered. The results of the 
numerical experiments and the sensitivity analyses demonstrate that 
considering inventory and backorder has a significant effect on the 
optimum solution of the cell formation problem, because they provide 
the condition in which some portion of the demand of a period can be 
satisfied in a prior or subsequent period. Moreover, for further 
research one can study Multi Attribute Decision Making (MADM) 
techniques and recent approaches in part families’ formation. 
Considering lead time for receiving parts from subcontracting can also 
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be another interesting addition to the proposed model. Considering the 
dynamic form of cell formation, incorporating uncertainties in the 
demand and machine availability, and using multi-objective 
optimization techniques can also be suggested for future studies. 
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