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Abstract 
The performance of the units is defined as the ratio of the weighted sum of outputs to 
the weighted sum of inputs. These weights can be determined by data envelopment 
analysis (DEA) models. The inputs and outputs of the related Decision Making Unit 
(DMU) are assessed by a set of the weights obtained via DEA for each DMU. In 
addition, the weights are not generally common, but rather, they are very close to zero 
or they are even equal to zero. This means that some major criteria will not be 
considered. Another problem is the similarity of the efficiency scores of efficient 
DMUs. However, this is not the case in reality, and the performance of the DMUs 
should be completely ranked. Using common weights can solve these problems 
completely during measuring the performance of DMUs. There are some articles in 
the literature to determine common weight sets (CSWs), but none of them takes into 
account the bootstrap approach. This paper introduces a novel, empirical and robust 
algorithm based on bootstrap technique to find CSWs. 

Keywords 
Data envelopment analysis, Common set of weights, Performance evaluations, 
Bootstrapping. 

 
  
 
 
 

 
 
 
 
 
 
 
 

                                                 
 Corresponding Author, Email: volkansoner@gazi.edu.tr, volkansoner1@gmail.com  

Iranian Journal of Management Studies (IJMS) http://ijms.ut.ac.ir/ 

Vol. 12, No. 2, Spring2019   Print ISSN: 2008-7055 

 pp. 175-189 Online ISSN: 2345-3745 

  DOI: 10.22059/IJMS. 2019.254137.673058 

  

 

mailto:volkansoner@gazi.edu.tr
mailto:volkansoner1@gmail.com


176    (IJMS) Vol. 12, No. 2, Spring2019   

Introduction 
Data Envelopment Analysis (DEA) is one of the most popular methods 
to assess the performance of Decision Making Units (DMUs). DEA is 
used for the performance assessment of DMUs based on the used 
multiple inputs and outputs (Charnes et al., 1978). DEA classifies 
DMUs into two classes such as efficient and inefficient. A DMU is 
efficient if the efficiency score has equal to 1 and if not, it is inefficient. 
Generally, some of the weights are very close to zero or they are even 
equal to zero. This causes the DMU to ignore inputs and outputs during 
performance evaluation. Therefore, DMUs are not assessed with the 
same criteria. Another important issue concerns the ranking of DMUs. 
Because DEA gives 1 score to efficient DMUs, it is not possible to rank 
DMUs. These are the remarkable difficulties and inadequate facets of 
DEA. 

To come through all of these problems, researchers have been doing 
some studies and these efforts will probably continue later. The 
essential ones of these are as follows. Andersen and Petersen (1993) 
presented a super efficiency DEA model. The difference with classic 
DEA models is its more than 1 efficiency score assignment for the 
exceedingly efficient DMUs. The principal attempt to restrict the 
weights was made by Thompson et al. (1990). Mecit and Alp (2013) 
proposed the correlation DEA model which generates bounds via 
correlation coefficient through the addition of new restrictions. Other 
references on the subject are as follows: Wong and Beasley (1990), Roll 
et al. (1991), Ganley and Cubbin (1992), Doyle and Green (1994), 
Sinuany-Stern et al. (1994), Troutt (1995), Torgersen et al. (1996), Cooper 
and Tone (1997), Mehrabian et al. (1999), Adler et al (2002), Angulo-
Meza and Estellita Lins (2002), Kao and Hung (2005), Cook et al. (2007), 
Podinovski (2007), Liu and Peng (2008) and Bal and Örkcü (2011). 

This paper is organized in the following manner. The concept of 
DEA is briefly reviewed in section 2. Section 3 presents the proposed 
algorithm to find CSWs with bootstrap technique. After that, two 
numerical examples are used in section 4 to find new CSWs with 
bootstrap technique. Finally, in section 5, some conclusions are drawn. 

 Theoretical Backgrounds 
The assessments of performance are particularly concerned with 
assessing the activities of firms. Examples include satisfaction per unit, 
which is a measure stated in the form of a ratio as 𝑂𝑢𝑡𝑝𝑢𝑡 / 𝐼𝑛𝑝𝑢𝑡, and 
is a usually used measure of efficiency.  

Then, efficiency is equal to:   
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡

𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑖𝑛𝑝𝑢𝑡
  =

𝑢1𝑦10 + 𝑢2𝑦20 + ⋯ + 𝑢𝑠𝑦𝑠0

𝑣1𝑥10 + 𝑣2𝑥20 + ⋯ + 𝑣𝑚𝑥𝑚0
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where 𝑢𝑖: weight of ith output, 𝑣𝑖: weight of ith input, s: the number 

of outputs,  and m: the number of inputs. There are two methods in 
determining the weights of inputs and outputs for this ratio value. The 
first of these methods is a subjective approach, determined by the 
opinion of an authority. Another method is an objective approach, 
determined by an approach on the basis of the scientific method. The 
direct calculation of performance is the computation of weights using 
these two methods. 

There are auxiliary processes in which inputs and outputs used for 
performance evaluation are considered as dependent or independent 
variables. Obtained results can be used as the score of its adoption in 
the ranking of DMUs after implementing some related statistical 
techniques such as regression line, canonical correlation analysis 
(Friedman and Sinuany-Stern, 1997), factor analysis and discriminant 
analysis (Sinuany-Stern et al., 1994; Sinuany-Stern and Friedman, 
1998). 

Data Envelopment Analysis 
Charnes et al. (1978) introduced the CCR model in DEA for the first 
time. To maximize efficiency scores, the CCR model calculates the 
weights for each DMU that is designed to assign different weights. 
Input-oriented CCR model has been formulated in the following format 
under the assumption of constant returns to scale (CRS): 

𝒎𝒂𝒙 𝛉𝟎 =  ∑ 𝒖𝒓𝒚𝒓𝟎

𝒔

𝒓=𝟏

∑ 𝒗𝒊𝒙𝒊𝟎

𝒎

𝒊=𝟏

⁄  

∑ 𝒖𝒓𝒚𝒓𝒋

𝒔

𝒓=𝟏

∑ 𝒗𝒊𝒙𝒊𝒋 ≤ 𝟏

𝒎

𝒊=𝟏

 ⁄      𝒋 = 𝟏, 𝟐, … , 𝒏  

𝒖𝒓, 𝒗𝒊 ≥ 𝟎   (𝒓 = 𝟏, 𝟐, … , 𝒔  𝒊 = 𝟏, 𝟐, … , 𝒎) 

(1) 

The translated version to linear programming model of input 
oriented CCR is as follows: 

𝛉𝟎 = 𝒎𝒂𝒙 ∑ 𝒖𝒓𝒚𝒓𝟎

𝒔

𝒓=𝟏

 

∑ 𝒗𝒊𝒙𝒊𝟎 = 𝟏

𝒎

𝒊=𝟏

 

∑ 𝒖𝒓

𝒔

𝒓=𝟏

𝒚𝒓𝒋 − ∑ 𝒗𝒊𝒙𝒊𝒋 ≤ 𝟎

𝒎

𝒊=𝟏

     𝒋 = 𝟏, 𝟐, … , 𝒏  

𝒖𝒓, 𝒗𝒊 ≥ 𝟎   (𝒓 = 𝟏, 𝟐, … , 𝒔  𝒊 = 𝟏, 𝟐, … , 𝒎) 

(2) 
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where: θ0: the efficiency score for the DMU0,  𝑥: input, 𝑦: output, 𝑢: 
the output weights, 𝑣: the input weights, and 𝑚, 𝑠, and 𝑛 are number of  
inputs, outputs and DMUs, respectively. 

Bootstrap Approach 
Bootstrapping is a form of larger class methods, which is re-sampled 
from the original data set, and therefore referred to as resampling 
procedures. Similar to Bootstrapping, some resampling procedures, 
such as jackknife (Quenouille, 1949) and permutation methods (Fisher, 
1935; Pitman, 1937; 1938) have a long history.  

After the bootstrap was invented , the research operations on it 
increased exponentially. Initially, there were various academic 
advancements on the asymptotic coherence of the bootstrap estimates. 
It soon came to be accepted in the statistical community and recognized 
in the natural sciences (Casella, 2003). Therefore, it has been applied to 
an extensive class of applications such as time series analysis, nonlinear 
regression, error rate estimation in discriminant analysis and logistic 
regression. 

Generally, you may be asked to estimate a parameter with an n-size 
sample or to specify a standard error or parametric range of privacy or 
to test a hypothesis about the parameter. These difficult tasks can be 
undertaken via bootstrap because it does not make any parametric 
assumptions. The bootstrap idea is simply to replace the unknown 
population distribution with the known empirical distribution (Efron, 
1982, 1993; Chernick, 2008). 

Pigeot (2001) compares the basic principles of two resampling 
techniques, namely the jackknife and the bootstrap. The bootstrap is 
more flexible than the jackknife and is currently the most popular 
resampling technique. Therefore, the bootstrap method is preferred to 
find the most optimal CSWs as an auxiliary tool in the presented 
algorithm in the next section. 

An Algorithm to Find CSW with Bootstrap Technique 
In this section, we propose a new algorithm to find a CSW vector based 
on bootstrap (hereafter, CSWB) technique. The new algorithm steps are 
as follows: 

Step 1. Calculate vectors (𝑣𝑘𝑚
∗ , 𝑢𝑘𝑠

∗ )  which are the weights of  inputs 
and  outputs respectively. The efficiency scores (𝜃𝑘

∗) for each DMUs 
(𝑘 = 1, … , 𝑛) are obtained by solving the linear programming model 
(2). 

Note that the weights for the first DMU are expressed as (𝑢11
∗ ,

𝑢12
∗ , 𝑢13

∗ , … , 𝑢1𝑠
∗ )  for outputs and (𝑣11

∗ , 𝑣12
∗ , 𝑣13

∗ , … , 𝑣1𝑚
∗ )  for inputs 

whereas the weights for nth DMU are expressed as (𝑢𝑛1
∗ ,

𝑢𝑛2
∗ , 𝑢𝑛3

∗ , … , 𝑢𝑛𝑠
∗ )  for outputs and (𝑣𝑛1

∗ , 𝑣𝑛2
∗ , 𝑣𝑛3

∗ , … , 𝑣𝑛𝑚
∗ )  for inputs. 
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Thus, when the efficiency scores of all DMUs are obtained, a weight 
matrix of 𝑛 × 𝑠 dimension is obtained for outputs while a weight matrix 
of 𝑛 × 𝑚  dimension is obtained for inputs. Furthermore, the model 
which contained in this step can be each of the DEA models. However, 
only input-oriented CCR model is presented in the current study. 

Step 2. New n-dimensional DMUs are drawn with resampling by 
replacement from n-dimensional DMUs. n-dimensional bootstrap 
DMU sample was generated for each of the DMUs. 

Step 3. Calculate the weights of inputs (𝑣𝑘𝑚
∗𝑏 ) and outputs (𝑢𝑘𝑠

∗𝑏) and 

the efficiency scores (𝜃𝑘
∗𝑏)  for each DMUs in bootstrap sample by 

solving the following linear programming model. 

𝜽𝒌
𝒃 = 𝒎𝒂𝒙 ∑ 𝒖𝒓

𝒃𝒚𝒓𝒌

𝒔

𝒓=𝟏

 

∑ 𝒗𝒊
𝒃𝒙𝒊𝒌 = 𝟏

𝒎

𝒊=𝟏

 

∑ 𝒖𝒓
𝒃

𝒔

𝒓=𝟏

𝒚𝒓𝒋 − ∑ 𝒗𝒊
𝒃𝒙𝒊𝒋 ≤ 𝟎

𝒎

𝒊=𝟏

  𝒋 ∈ {𝑩𝒐𝒐𝒕𝒔𝒕𝒓𝒂𝒑 𝑺𝒂𝒎𝒑𝒍𝒆} 

𝒖𝒓, 𝒗𝒊 ≥ 𝟎   (𝒓 = 𝟏, … , 𝒔  𝒊 = 𝟏, … , 𝒎) 

(3) 

where 𝑏, which is the upper index, indicates the repetition of the 
bootstrap. In addition, the output weights of kth DMU are expressed as 

𝑢𝑘1
∗𝑏 , 𝑢𝑘2

∗𝑏 , 𝑢𝑘3
∗𝑏 , … , 𝑢𝑘𝑠

∗𝑏  and the input weights are expressed as 
𝑣𝑘1

∗𝑏 , 𝑣𝑘2
∗𝑏 , 𝑣𝑘3

∗𝑏 , … , 𝑣𝑘𝑚
∗𝑏  for bth bootstrap repetition. 

 
Step 4. Repeat steps 2–3 B times to obtain robust weights 

{𝑢̂𝑟 𝑣𝑖̂; 𝑏 = 1, … , 𝐵}. We repeated the procedure 2000 times to ensure 
appropriate accuracy. The equations (4) and (5) are used to obtain the 
robust weights of output and input 

𝒖̂𝒓
∗ =

𝟏

𝒏
∑ (

∑ 𝒖𝒋𝒓
∗𝒃𝑩

𝒃=𝟏

𝑩
)

𝒏

𝒋=𝟏

, 𝒓 = 𝟏, … , 𝒔  
(4) 

𝒗̂𝒊
∗ =

𝟏

𝒏
 ∑ (

∑ 𝒗𝒋𝒊
∗𝒃𝑩

𝒃=𝟏

𝑩
)

𝒏

𝒋=𝟏

, 𝒊 = 𝟏, … , 𝒎 
(5) 

Step 5. Calculate efficiency scores for each DMU. The efficiency 
score for DMU0 is calculated as follows: 

𝑬̂𝟎 = ∑ 𝒖̂𝒓
∗𝒚𝒓𝟎

𝒔

𝒓=𝟏

∑ 𝒗̂𝒊
∗𝒙𝒊𝟎

𝒎

𝒊=𝟏

⁄  (6) 
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Illustrative Examples 
To illustrate the important role of the CSWB method in determining a 
CSWs in the efficiency evaluation, we use two numerical examples in 
this section.  

First Example: Forest districts of Taiwan 
A numerical case adopted by Kao and Hung (2005) is explained in this 
part. In addition, the common weights for DEA model are determined. 
Kao and Hung (2005) demonstrated their solution method for the 
problem by displaying their example. Makui et al. (2008) studied the 
earlier example to find CSWs using their goal programming method. In 
this study, this example is investigated with the proposed approach and 
its outcomes are compared with earlier studies. Thus, the current 
research is concerned with the assessment of 17 forest districts of 
Taiwan. Each forest district has four inputs and three outputs. The detail 
of inputs and outputs are shown in Appendix 1-A.  

Table 1. CCR scores and weights of inputs and outputs 

Note: U1: Main product, U2: Soil cons, U3:Recreation V1:Budget, V2:Initial 
stocking, V3:Labor Land 

 
Note that in the CCR solution from Table 1, the weights of some 

DMUs are 0 or very close to 0.  This implies that some inputs and 
outputs are not considered. This is one of the weaknesses of the DEA 
in performance evaluation. Important inputs and outputs are being 
ignored for performance evaluations. Decision makers have objections 
to this type of assessment. 

D
M

U
s 

CCR 
Score 

Weights of Outputs  Weights of Inputs  

U1 U2 U3 V1 V2 V3 V4 

1 1 0.0000 0.0000 0.0003 0.0000 0.0000 0.0203 0.0000 
2 1 0.0000 0.0057 0.0000 0.0009 0.0075 0.0000 0.0000 
3 1 0.0072 0.0000 0.0000 0.0027 0.0009 0.0028 0.0000 
4 1 0.0000 0.0076 0.0000 0.0031 0.0085 0.0000 0.0000 
5 1 0.0216 0.0000 0.0000 0.0133 0.0000 0.0090 0.0004 
6 1 0.0000 0.0052 0.0000 0.0031 0.0046 0.0000 0.0008 
7 1 0.0000 0.0083 0.0000 0.0000 0.0000 0.1052 0.0000 
8 1 0.0005 0.0078 0.0000 0.0000 0.0121 0.0000 0.0000 
9 1 0.0220 0.0000 0.0000 0.0000 0.0044 0.0171 0.0000 

10 0.9403 0.0000 0.0071 0.0000 0.0000 0.0068 0.0003 0.0035 
11 0.9346 0.0000 0.0048 0.0000 0.0000 0.0045 0.0002 0.0024 
12 0.8290 0.0052 0.0055 0.0000 0.0000 0.0077 0.0042 0.0000 
13 0.7997 0.0000 0.0043 0.0000 0.0000 0.0041 0.0002 0.0021 
14 0.7733 0.0048 0.0076 0.0000 0.0000 0.0077 0.0027 0.0040 
15 0.7627 0.0000 0.0056 0.0000 0.0000 0.0065 0.0032 0.0000 
16 0.7435 0.0000 0.0067 0.0000 0.0010 0.0087 0.0000 0.0000 
17 0.6873 0.0153 0.0000 0.0000 0.0058 0.0018 0.0061 0.0000 
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The results obtained through the application of the five steps of the 

proposed CSWB algorithm are shown in Table 2. Table 2 and Figure 
1.(a) show the weights of the inputs and outputs according to the B (B: 
number of repetitions) times (5, 25, 250, 500, 1000, 1500, 2000) 
mentioned in the fourth step of given algorithm. Note that except for 
U3 weight, all weights increase when the simulation repetitions 
increase. It is observed that all of the weights are zero or very close to 
zero, especially as shown in the first relatively few repetitions. In the 
last row, the estimated weights have a reasonable size. 

Table 2. Common weights of CSWB algorithm for forest districts of Taiwan 

Number of 

Repetition (B) 

Weights of Outputs  Weights of Inputs  

U1 U2 U3 V1 V2 V3 V4 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

25 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 

100 0.0001 0.0001 0.0000 0.0000 0.0002 0.0003 0.0003 

250 0.0004 0.0003 0.0000 0.0001 0.0005 0.0007 0.0007 

500 0.0007 0.0006 0.0000 0.0002 0.0010 0.0013 0.0014 

1000 0.0015 0.0011 0.0001 0.0004 0.0020 0.0026 0.0028 

1500 0.0022 0.0017 0.0001 0.0006 0.0030 0.0040 0.0041 

2000 0.0030 0.0023 0.0001 0.0008 0.0040 0.0053 0.0055 

 
Table 3 shows the efficiency scores for all DMUs according to B 

repetitions. The discrimination power of DEA is increasing at this point 
and the important DMU becomes more important. It is expected to 
exceed the value 1 of the efficiency scores due to the increase in 
weights. If some values are greater than one in weights, all values can 
be standardized by dividing the maximum weight.  
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Table 3.Efficiency scores of DMUs based on CSWB algorithm for forest districts 

 
The correlation test of the scores of earlier, different methods was 

performed and the results are shown in Table 4.  A Spearman rank 
correlation test (Daniel, 1990), with an rs statistic equal to 0.4781, 
0.4347, 0.4856, 0.6074, 0.4204, 0.8136 and 0.9007, shows that the 
ranks of some previously studied models in the literature are correlated, 
with p<0.001. 

Table 4. Correlation results for forest districts 

Model Correlation Coefficient 

CCR 47,81% 

MAD 43,47% 

MSE 48,56% 

MAX 60,74% 

Makui et al. (2008) 42,04% 

Razavi et al. (2014) 81,36% 

Alp (2016) 90,07% 

 
 

Second example: manufacturing systems 
In this example, a data set that has been studied in Shang and 

DISTRICT 

(DMUS) 

NUMBER OF REPETITION (B) 

5 25 250 500 1000 1500 2000 

1 0.6383 0.8112 0.8653 0.9533 1.0793 1.1170 1.1353 

2 0.3238 0.3434 0.3570 0.3572 0.3589 0.3602 0.3611 

3 0.3680 0.3762 0.3579 0.3577 0.3565 0.3557 0.3553 

4 0.2442 0.2615 0.2756 0.2760 0.2781 0.2798 0.2810 

5 0.3573 0.3798 0.3995 0.4006 0.4030 0.4050 0.4065 

6 0.4809 0.5095 0.5525 0.5652 0.5812 0.5868 0.5907 

7 0.1644 0.1771 0.1856 0.1856 0.1872 0.1885 0.1892 

8 0.2851 0.3081 0.3152 0.3190 0.3256 0.3281 0.3293 

9 0.3121 0.3587 0.3890 0.4074 0.4343 0.4437 0.4490 

10 0.2907 0.3074 0.3191 0.3196 0.3213 0.3224 0.3232 

11 0.2296 0.2380 0.2438 0.2430 0.2425 0.2423 0.2422 

12 0.2348 0.2519 0.2607 0.2612 0.2629 0.2642 0.2651 

13 0.2337 0.2443 0.2493 0.2490 0.2490 0.2492 0.2494 

14 0.2575 0.2731 0.2827 0.2833 0.2848 0.2858 0.2865 

15 0.1643 0.1740 0.1821 0.1819 0.1829 0.1837 0.1842 

16 0.1223 0.1276 0.1281 0.1279 0.1282 0.1284 0.1285 

17 0.1880 0.2015 0.2052 0.2056 0.2069 0.2079 0.2085 
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Sueyoshi (1995), Li and Reeves (1999) and Lam and Bai (2011) is used. 
This data includes a set of twelve manufacturing systems with two 
inputs and four outputs. The detailed inputs and outputs are shown in 
Appendix 1-B.  

Table 5. CCR Scores and weights for manufacturing systems 

SYSTEM 

(DMUS) 

CCR 

SCORE 

Weights of Outputs  Weights of Inputs  

U1 U2 U3 U4 V1 V2 

1 1.0000 0.0238 0.0000 0.0000 0.0000 0.0588 0.0000 

2 1.0000 0.0145 0.0000 0.0000 0.0146 0.0499 0.0397 

3 0.9824 0.0283 0.0000 0.0162 0.0009 0.0850 0.0000 

4 1.0000 0.0238 0.0000 0.0070 0.0159 0.0847 0.0273 

5 1.0000 0.0000 0.0000 0.0833 0.0000 0.1053 0.0000 

6 1.0000 0.0000 0.0000 0.0614 0.0420 0.2088 0.0000 

7 1.0000 0.0000 0.0188 0.0312 0.0144 0.1610 0.0000 

8 0.9614 0.0211 0.0040 0.0000 0.0118 0.0758 0.0262 

9 1.0000 0.0000 0.0000 0.0000 0.0552 0.2725 0.0000 

10 0.9535 0.0000 0.0278 0.0000 0.0000 0.0877 0.0610 

11 0.9831 0.0206 0.0000 0.0000 0.0031 0.0564 0.0000 

12 0.8012 0.0167 0.0000 0.0049 0.0111 0.0593 0.0191 

 
Note: U1: Qualitative Benefits, U2: Work in Process, U3: Average number of 
Tardy Jobs, U4: Average Yield, V1: Capital and Operating Cost, V2: Floor 
Space Requirements 

 
As in the previous example, these manufacturing systems also show 

that the input and output weights for some DMUs are zero in Table 5. 
This shows that these inputs and outputs are not considered in the 
computation of the DMU’s performance evaluations. As in the case of 
first example, the neglected inputs and outputs are no longer neglected 
by means of the proposed CSWB method. Table 6 and Figure 1.(b) 
show the weights determined by CSWB method for twelve DMUs. As 
the weights shown in Table 6 are around zero in the first iteration, as 
seen in the previous example, it appears that as the simulation 
repetitions increase, they become non-zero. 
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Table 6. Common weights based on CSWB for manufacturing systems 

Number of 

Repetition 

(B) 

Weights of Outputs  Weights of Inputs  

U1 U2 U3 U4 V1 V2 

5 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 

25 0.0001 0.0000 0.0001 0.0001 0.0006 0.0004 

100 0.0003 0.0001 0.0005 0.0003 0.0022 0.0018 

250 0.0007 0.0003 0.0013 0.0009 0.0055 0.0044 

500 0.0014 0.0007 0.0026 0.0017 0.0108 0.0088 

1000 0.0027 0.0014 0.0051 0.0034 0.0212 0.0178 

1500 0.0041 0.0020 0.0077 0.0051 0.0317 0.0267 

2000 0.0055 0.0027 0.0102 0.0068 0.0421 0.0357 

 
After 2000 repetitions, the efficiency scores obtained through the 

CSWB weights are shown in Table 7. 

Table 7. Efficiency results for manufacturing systems 

SYSTEM 

(DMUS) 

NUMBER OF REPETITION (B) 

5 25 250 500 1000 1500 2000 

1 0.7507 0.7767 0.7748 0.7772 0.7807 0.7817 0.7822 

2 0.7363 0.7613 0.7600 0.7625 0.7661 0.7673 0.7678 

3 0.7614 0.7780 0.7819 0.7829 0.7841 0.7842 0.7841 

4 0.8274 0.8480 0.8519 0.8539 0.8565 0.8572 0.8573 

5 0.8395 0.8625 0.8687 0.8704 0.8728 0.8733 0.8733 

6 0.7035 0.6976 0.6960 0.6952 0.6930 0.6921 0.6913 

7 0.7397 0.7382 0.7371 0.7365 0.7347 0.7339 0.7332 

8 0.7106 0.7237 0.7204 0.7214 0.7225 0.7227 0.7227 

9 0.4763 0.4563 0.4462 0.4449 0.4420 0.4409 0.4400 

10 0.6183 0.6235 0.6189 0.6190 0.6186 0.6182 0.6177 

11 0.6900 0.7095 0.7067 0.7082 0.7105 0.7111 0.7114 

12 0.6440 0.6604 0.6640 0.6653 0.6670 0.6674 0.6675 

 
A Spearman correlation test is applied for detailed investigation of 

the relation among the efficiency scores of the previous three methods 
in the literature. According to the test results given in Table 8, the 
correlation between the efficiency scores of other methods is significant 
at the 0.01 level.  Because these methods have given in similar results, 
our proposed approach is beneficial and will give consistent assessment 
results.  
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Table 8. Correlation results for manufacturing system  

MODEL CORRELATION COEFFICIENT 

PDM Model 1 Lin et al. (2016) 98,54% 

PDM Model 2 Lin et al. (2016) 98,43% 

Lin et al. (2016) 98,31% 

 

 

 
Figure 1.Common weights for forest districts and manufacturing systems 

Conclusion and Discussion 
The weights may change in order to maximize the relative efficiency 
scores in DEA. Some of the weights of their inputs and outputs could 
be 0 or very close to 0. Thus, they cannot be taken into account in the 
assessment of the performance of some DMUs. Inputs and outputs are 
assigned the common weights for all DMUs via the proposed robust 
bootstrap algorithm.  In addition, all inputs and outputs will be included 
in the performance evaluation due to the weights greater than zero, and 
all of them are the same for all DMUs. The Bootstrap method is based 
on the law of large numbers of statistics and the central limit theory. 
Problematic data was imagined as a population and generated finite 
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number of samples with replacement by Bootstrap method. All of them 
are possible samples. Thus, weights of inputs and outputs get more 
reliable and realistic. In this study, the number of resampling was set at 
2000 iterations. Optimum resampling number may be studied by future 
studies. However, it can be said that as the number of resampling 
increases, weights converge to more stable values due to the law of 
large numbers. This is seen experimentally in Tables 2 and 5 and in 
Figures 1. Therefore, decision-makers were prevented from objecting 
to different weights of DEA models, and more balanced weights were 
obtained. All inputs and outputs in the performance calculations were 
also taken into account, too. 
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APPENDIX 
Table 1-A. The forest districts dataset (Kao and Hung, 2005) 
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1 51.62 11.23 49.22 33.52 40.49 14.89 3155.71 

2 85.78 123.98 55.13 108.46 43.51 173.93 6.45 

3 66.65 104.18 257.09 13.65 139.74 115.96 0 

4 27.87 107.6 14 146.43 25.47 131.79 0 

5 51.28 117.51 32.07 84.5 46.2 144.99 0 

6 36.05 193.32 59.52 8.23 46.88 190.77 822.92 

7 25.83 105.8 9.51 227.2 19.4 120.09 0 

8 123.02 82.44 87.35 98.8 43.33 125.84 404.69 

9 61.95 99.77 33 86.37 45.43 79.6 1252.6 

10 80.33 104.65 53.3 79.06 27.28 132.49 42.67 

11 250.62 183.49 144.1 59.66 14.09 196.29 16.15 

12 82.09 104.94 46.51 127.28 44.87 108.53 0 

13 202.21 187.74 149.39 93.65 44.97 184.77 0 

14 67.55 82.83 44.37 60.85 26.04 85 23.95 

15 72.6 132.73 44.67 173.48 5.55 135.65 24.13 

16 84.83 104.28 159.12 171.11 11.53 110.22 49.09 

17 71.77 88.16 69.19 123.14 44.83 74.54 6.14 

I: Input O: Output 

Table 1-B. The manufacturing systems dataset (Shang and Sueyoshi, 1995) 

I: Input O: Output 
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1 17.02 5 42 45.3 14.2 30.1 

2 16.46 4.5 39 40.1 13 29.8 

3 11.76 6 26 39.6 13.8 24.5 

4 10.52 4 22 36 11.3 25 

5 9.5 3.8 21 34.2 12 20.4 

6 4.79 5.4 10 20.1 5 16.5 

7 6.21 6.2 14 26.5 7 19.7 

8 11.12 6 25 35.9 9 24.7 

9 3.67 8 4 17.4 0.1 18.1 

10 8.93 7 16 34.3 6.5 20.6 

11 17.74 7.1 43 45.6 14 31.1 

12 14.85 6.2 27 38.7 13.8 25.4 


