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Abstract 
This paper investigates the Stackelberg equilibrium for pricing and ordering 

decisions in a dominant retailer dual-channel supply chain. In a dual-channel sales 

network, the products are sold through both a traditional, physical retailer and a 

direct Internet channel. It is assumed that the retailer is the leader and the powerful 

member of the supply chain has the market power and acts as a leader and proposes 

his/her inventory policies and dollar-markup and the manufacturer, as a follower, 

will decide on the wholesale price and the price of Internet channel as well as the 

inventory quantity of online store based on the retailer’s decisions. The situation is 

formulated as a bi-level programming problem, and it is converted to a single level 

model using Karush-Kuhn-Tucker (KKT) conditions. The single level problem is 

solved using the α-Branch and Bound (α-BB) algorithm. We investigate the 

significance of customers’ channel preference on adopting an online channel by the 

manufacturer. We show that an online channel is not always detrimental to a retailer, 

but in a Pareto-zone, a range or zone of customers’ channel preference, both supply 

chain members benefit from newly added sales channel. 
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Introduction  
Today, the retailers are often much more powerful than manufacturers, 

and as a result they have more influence on whole supply chain 

procedures. Wal-Mart is a good example of a dominant retailer that 

constantly employs pressure on its suppliers to reduce their prices and 

improve service level. In today’s market, in addition to the dominant 

retailers, there are two different categories of customers: I) some 

customers prefer online shopping. These kinds of customer dislike 

shopping from traditional, physical stores and II) other customers 

dislike online shopping and prefer to take their purchases home 

immediately. When a product has a high customers’ channel preference, 

it will have a higher possibility of being sold on the Internet.  To attract 

both types of consumers, many distributors sell their products through a 

dual-channel sales network, joining the physical channel with online 

sales.  

This paper examines a dual-channel supply chain, a physical 

retailer with a manufacturer-owned online store. We assume that the 

retailer has the market power and could influence the pricing policy of 

the manufacturer. The problem has a Stackelberg game structure in 

which the retailer and the manufacturer are the leader and the 

follower, respectively. The hierarchical structure of the model results 

in a bi-level programming problem that is solved using Karush-Kuhn-

Tucker conditions and α-Branch and Bound (α-BB) algorithm. We 

find the Stackelberg equilibrium for the wholesale and retail prices as 

well as inventory quantities in a single-period setting. Our model 

incorporates customers’ channel preference for purchasing channel 

through random demand functions. The results show that in a Pareto-

zone, a range or zone of customers’ channel preference, both supply 

chain members benefit from newly added online sales channel. 

At last, we carried out a sensitivity analysis of some of the model 

parameters and investigated their effects on the equilibrium.  

Literature Review 
Recently, a vast majority of the literature has considered the 

interaction and competition between the retailer and the manufacturer 

and their effect on operational decisions in a dual-channel supply 

chain. The manufacturers in a dual-channel supply have two revenue 
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sources: the revenue of selling to the physical retailer and the revenue 

of selling directly to customers. However, the result is not always 

beneficial to the manufacturers because of channel conflict (Xiao, 

Choi, & Cheng, 2014). The manufacturer acts as both a supplier and a 

retailer. This is, in fact, a reason of conflict between supply chain 

members (Tsay & Agrawal, 2004).  

In supply chains with a powerful dominant retailer, the 

manufacturer, in order to increase his/her sales and control the 

dominant retailer, adds a direct online channel and shapes a dual-

channel supply chain (J. Chen, Zhang, & Sun, 2012). As mentioned in 

Modak and Kelle (2018), the main aim behind using a dual-channel 

supply chain is to cover a wider range of customers. 

Chiang et al. (2003) use a Stackelberg game and provide a strategic 

analysis to investigate the interactions between the manufacturer and 

the retailer. Chen et al. (2008) investigate the influence of service 

level on each of sales channels in a dual-channel and finally decide 

when the manufacturer should create a direct channel. Hua et al. 

(2010) adopt that three factors affect the demand function of each 

sales channel: the price of physical retailer, the price of online channel 

and at last the quoted lead time. They analyze the impacts of the 

delivery lead time of the direct channel on the price decision of each 

channel and the profits of the manufacturer and the retailer. Panda et 

al. (2015) consider a sale network for high-tech products and obtain 

pricing and replenishment policies and conclude that product 

compatibility with online sales has a significant impact on the pricing 

policy. Xu et al. (2012) extend the work of Chiang et al., (2003) and 

consider the delivery lead time decision in the dual-channel supply 

chain model. Chen et al. (2017) integrate the channel environmental 

sustainability into the dual-channel supply chain and discuss the 

environmental sustainability strategies and pricing policies 

simultaneously.  Mukhopadhyay et al. (2008) consider a mixed-

channel model that the retailer is allowed to add value to the product 

to differentiate its offering for the customers. They obtain optimum 

pricing decisions, the amount of value added to the product by the 

retailer, and the manufacturer’s wholesale price for the retailer. They 

incorporate information asymmetry, where the manufacturer has 

incomplete information about the retailer’s cost of adding value.  
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Batarfi et al. (2016) consider a structure that standard and customized 

products are sold through the physical retailer and online sales 

network, respectively. They include sales prices, the delivery lead-

time and product differentiation as three factors that impact the 

demand function and identify the optimal policy to maximize the total 

profit of the supply chain. Zhang et al.  (2012) consider three different 

power structures (which are manufacturer Stackelberg, Retailer 

Stackelberg and Vertical Nash) and investigate the impact of product 

substitutability and pricing strategies in a dual exclusive channel 

system. Li et al. (2014) consider a dual channel with a risk-neutral 

manufacturer and a risk-averse retailer and investigate the equilibrium 

results and show that the retail price will decrease as the retailer 

becomes more risk averse. 

The above cited literature mostly focuses on studying the optimal 

operational decisions in a dual-channel supply chain. However, 

collaboration and coordination mechanisms of dual sales have 

attracted much attention in the past few years. These studies usually 

use a supply chain contract to decline the channel conflict. These 

contracts usually enable the physical retailer to set pricing and 

ordering policies that are equivalent to those in an integrated supply 

chain. Coordination between the retailer and the manufacturer of the 

supply chain can make a Pareto improvement in profits. 

David and Adida (2015) propose a linear quantity discount contract 

to coordinate the dual channel supply chain. They consider a single 

supplier that both controls an online channel and sells its product 

through multiple differentiated retailers. Chen et al. (2012) show that a 

contract that determines the pricing policy of a manufacturer with a 

complementary agreement, such as profit-sharing or two-part tariff 

agreement, could coordinate the supply chain and reduce the conflict 

between sales channels. Dumrongsiri et al. (2008) investigate when the 

manufacturer benefits more from adding a new Internet channel. They 

conclude that this situation occurs when the retailer’s marginal cost is 

high and the variability of wholesale price and demand is low. Cattani 

et al. (2006) analyze price homogeneity between the two channels to 

abate the channel conflict. They found that this strategy increases 

profits for both the retailer and the manufacturer, the supplier benefiting 

from additional revenue and the retailer benefiting from a wholesale 
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price reduction. Yan et al.  (2011) present that brand differentiation 

cannot coordinate the sales network. They observed that when the 

manufacturer sets the wholesale price and online price in a way that 

maximizes the whole supply chain, a profit sharing contract could 

coordinate the sales network. Chen et al. (2013) investigate brand 

loyalty in a dual-channel supply chain. They found out that improving 

brand loyalty was profitable for both of the manufacturer and retailer, 

and that an increased service value may alleviate the threat of the 

Internet channel for the retailer and increase the manufacturer’s profit. 

Zhao et al. (2009) investigate coordination mechanisms under 

symmetric information and asymmetric information in a single 

dominant retail-channel. They implement an option contract to 

coordinate the sale network.  

Tsay and Agrawal (2004) show that adding an online channel is not 

always detrimental to the traditional retailer, but also it may be 

beneficial for both the retailer and the manufacturer because of 

counteracting double marginalization. They suggest that coordination 

of the supply chain may be achieved by giving the reseller a 

commission for diverting customers toward the online sales channel. 

The result of Cai (2010) is the same. He introduces the channel-adding 

Pareto-zone, a range or zone of customers’ channel preference, in 

which both supply chain members benefit from newly added online 

sales channel. Xu et al. (2018) consider the coordination of a dual-

channel supply chain under mandatory carbon emission capacity 

regulation.  

In general, the dual-channel problem is modeled by game theory 

and bi-level programming and the solution methods used to tackle 

these problems are not vast. Most of the papers in this area are 

deterministic bi-level problems. To solve such a problem, the 

optimization problem of the lower-level problem is solved by 

considering leaders’ decisions as parameters and in the next step, the 

upper-level problem obtains the optimal value of decision variables 

using the optimal values that are computed in the lower-level problem. 

We can mention Cai (2010); Cattani et al. (2006); Dumrongsiri et al. 

(2008); Hua et al. (2010); Li et al. (2014); Modak & Kelle,(2018); 

Tsay & Agrawal (2004) as some examples that tackle their problems 

by this solution method.  Chen et al. (2012) use Lagrangian 
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Relaxation method to obtain the optimal solutions of prices in both 

retail and online channels.   

The impact of the customers’ channel preference on the performance 

of supply chain members in a retailer-Stackelberg dual-channel supply 

chain setting with random demand functions is not studied in the 

literature and we found it as a literature gap.  In this paper, we consider 

customers' channel preference and price-sensitivity at the same time to 

analyze the supply chain performance.  We show that, even in a ―retailer-

Stackelberg scenario‖, there is a range of the customers' channel 

preference in which supply chain members benefit from the new online 

store. 

As stated earlier, Cai (2010) studies a manufacturer-Stackelberg 

situation and shows the existence of a Pareto-zone. Our paper explores 

the same feature in a retailer-Stackelberg scenario. In particular, we 

show that even when the retailer is the dominant member of the 

supply chain, there are situations where both the manufacturer and the 

retailer benefit from dual-channel supply chain. In is worth nothing 

that the solution method of our paper is completely different of  Cai 

(2010). 

Mathematical modeling 

In this section, we introduce the notation and formulation used in our 

dual-channel supply chain problem. As shown in Figure 1 , we 

consider a market with a traditional retailer that buys a product from a 

manufacturer. The manufacturer sells his/her product through both 

retail channel and a newly added online store. We consider a linear 

demand model with an uncertain additive part. Our problem involves 

a hierarchical decision-making process and fits well to a Stackelberg 

game that is formulated as a bi-level programming problem.  
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Fig. 1. A dual-channel supply chain 

In the whole paper, we use subscripts and superscripts as follow: 

Table 1. Subscripts and Superscripts 

Subscripts 

m the manufacturer 

d Online store 

r Physical retailer 

Superscripts 

SRS Single retail channel 

DRS Dual retailer Stackelberg 

 Modeling of dominant retailer single channel supply chain 

In the single channel setting, the manufacturer distributes the products 

through just a physical retailer. In this scenario, the retailer announces 

his/her dollar-markup mr. As a consequence, for whatever wholesale 

price that is quoted by the manufacturer, the unit retail price in the 

market will be pr= w+mr.  

Market’s demand function is defined as Dr(pr)= -αpr+εr where   

is the base and the potential market size of the product and α is the 

sensitivity of the demand to the price.  

In the single channel supply chain, the retailer takes the 

manufacturer's response function into account for declaring his/her 

own dollar-markup and inventory policies. The problem has a 
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hierarchical structure and is modeled as a bi-level programming 

problem as follow: 

Upper-level problem/ retailer problem: 

   
,

min max

Max  , ( ) ) ( )

                                      ( ) ( )

S.T:

, , ,

(

, ,

r r

r r r r r r r r r r
m z

r r r

r r r r r r r r r r r

E p z m w m m z

v z

m p w p w a z z b

s

p p p

w

p

          

  

    



 

 
(1) 

Lower-level problem/ manufacturer problem: 

   MAX  [ ( , , ) ]  E ( ) ( )

S.T:

M d d m r r
w

E w p z MAX w w c w m z

c w

          



 (2) 

In the upper-level problem mr=pr-w≥0 guarantees the profitability 

of the retailer and in the lower level c w does the same for the 

manufacturer. Other constraints are necessary bounds. 

Demand function modeling 

In a dual channel supply chain, the product is sold through both a 

traditional physical retailer and an online store. We segment the 

market with size () into two submarkets through the consideration of 

customers’ channel preference: r=a represents the size of the 

submarket that prefers to buy from physical retailer and d=(1-a) 

represents the size of the submarket that prefers the online store where

[0,1]a . The value of the parameter a is called ―customers’ channel 

preference‖.  More information about customers’ channel preference 

in electronic markets can be found in studies by Kacen, Hess, & 

Chiang, (2013) and Liang & Huang (1998). 

We use a downward sloping linear demand function with an 

additive uncertain part which is used broadly in the literature 

(Bernstein & Federgruen, 2004; F. Y. Chen, Yan, & Yao, 2004; J. 

Chen et al., 2012; Yan et al., 2011) and write the demand function of 

the traditional retailer ( r ) and online store (d ) as follow: 
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   

   

r r d r r r d r r

d r d d d d r d d

D p , p p p p

D p , p p p p

   

   

    

    
 (3) 

where rp and dp show prices of physical retailer and online store, 

respectively. Assume that the set of feasible prices for channel i is a 

closed interval min max,  ,i ip p i r d    
. As mentioned earlier, the parameter 

  is the base market size that is segmented into two different market 

shares: the base market share of retail-channel is a while (1-a) 

determines the base market share of online channel. The parameters αr>0 

and αd>0 (αr >β, αd > β) are price sensitivities in the retail and online 

stores, respectively. The parameter 0   is cross-price sensitivity and 

shows substitutability of the products that are distributed in two channels. 

This parameter also shows the size of the market that shifts from the 

retail channel to the online store per unit increase in the price difference 

between pr and pd when pr > pd. The random variable εi i= r, d indicates 

the uncertain part of the demand function of channel i  . Probability 

density function (PDF), cumulative distribution function (CDF), and 

expected value of  εi  are assumed known and are denoted by fi(.), Fi(.) 

and πi. Assume that the range of εi is [ai, bi] i= r, d.  

Define the deterministic part of each demand function by i (pi, p-

i)= i-αipi+β(p-i, pi) i= r, d. p-i shows the price of channel i’s 

competitor. Notice that: (I) 
0i

i

ip


 


   



 which means the demand 

function of channel i is downward sloping in his/her price and (II) 

0i
i

ip


 




  



 which means when channel i’s competitor increases 

his/her price, the demand of channel i  will strictly increases and at 

last (III) i (pi, p-i)takes its maximum (minimum) value when the 

channel i chooses 
min

ip (
max

ip ) and its competitor chooses 
max

ip (
min

ip

). 

Total deterministic market demand is DT (pr, pd)= -αrpr- αdpd. With 

one unit increase of price in two channels, we will have   unit decrease 

demand (where α=αr+αd). If we define rk



  and1 dk




   as relative 

price sensitivity in the retail and direct online channels as  respectively, 
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the demand function of each physical and online channel would be as 

follow: 

( , ) ( )

( , ) (1 ) (1 ) ( )

r

d

r r d r d r r

d r d d r d d

D p p a kp p p

D p p a k p p p





   

   

    



      


 (4) 

Modeling of a dominant-retailer dual-channel supply chain 

In this section, we study a supply consisting of a manufacturer and a 

dominant retailer. The manufacturer decides to open a direct online 

channel. We consider that the two channels compete in a market with 

a potential size (a ). With a new online store, a percentage of 

customers now prefer to buy the product from the newly added online 

channel. In contrary to normal situations that the manufacturer is 

market leader and chooses the wholesale price, in the retailer-

Stackelberg setting the manufacturer chooses the wholesale price after 

that the retailer announces his/her profit margin.   

In this section, we consider a supply chain consisting of a 

manufacturer who distributes his/her product through two channels: an 

independently physical retailer and a manufacturer-owned online 

store. It is assumed that the retailer is the powerful member of the 

supply chain. In this case, the sequence of decisions is as follows:  

1. The retailer declares his profit margin mr and orders qr from the 

manufacturer. 

2. The manufacturer sets the wholesale price w charging the 

retailer. He/ She knows that, for whatever w he/she quotes, the 

unit price of physical retailer will be pr= mr+w. At the same 

time, the manufacturer also determines the online store price pd 

and chooses a production quantity to be shipped to the online 

store qd.  

3. The retailer uses response function of the manufacturer and 

chooses the best markup to maximize his/her profit. 

4. The manufacturer will then produce the total number of ordered 

quantities Q= qd+qr with a unit production cost ofc . 

5. There is a shortage cost sii+r,d for each unit of unsatisfied 

demand in different sale stores. 
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6. Excess inventory of each channel is salvaged with the value of 

vii+r,d. 

To simplify the model analysis, like Petruzzi and Dada (1999), we 

define zii+r,d as the amount of safety stock that is held to confront 

the demand randomness and write qi=i+zi where i is the deterministic 

part of the demand function that was defined earlier. Notice that the 

range of iz is ,i ia b . 

With this reformulation, the decision variables for the retailer are 

mr and zr while the manufacturer decides about w, pd and zd. 

The expected profit function of the retailer is similar to a 

newsvendor model with price and order quantity as decision variables 

that are written as follows: 

 , , ([ ] ( ) ) ( ) ( ) ( )r r r r r r r r r r r r r rE m mp D s z vw zq           (5) 

In the above-mentioned profit function, r(zr) and r(zr) are 

expected excess and shortage inventory, which are obtained as follow: 

( ) ( )
r

r

z

r r r r r

a

z F d   
and ( ) ( )r r r r r rz z z    . For more details, see 

Appendix 1.  

To have the retailer price in its explicit form, we can substitute mr 

with pr+w  in the profit function. 

The manufacturer has two different revenue sources: (1) the profit 

that he/she earns by selling the product to the physical retailer and (2) 

the profit that he/she acquires by selling the product directly to 

customers through the online store. 

The expected profit function of the manufacturer is written as follows: 

 [ ( , , ) ] ( ) ( )( )

                                           ( ) ( ) ( ) ( )

M d d r r d d d

d d d d d d d

E w p z w c z p c

p s w z w v z

        

      
 (6) 

Expected excess and shortage inventory in the online store d(zd) 

and d(zd) are defined like the ones for the physical retailer: 

( ) ( )
d

d

z

d d d d d

a

z F d    and ( ) ( )d d d d d dz z z    . 
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In the dual retailer-Stackelberg supply chain, to obtain his/her best 

markup decision, the retailer uses the manufacturer's reaction function 

into account. To model the retailer-Stackelberg game, which has a 

hierarchical structure, we develop a bi-level model as follow: 

Upper-level problem/ retailer problem: 

   
,

min max

Max  [ ] ( ) ) ( )

                                      ( ) ( )

S.T:

, (

, , , ,

r r

r r r r r r r r r r
p z

r r r

r r r r r r r r r

p qE p w p w z

v z

p w a z

s

z p p

w

b p p

      

 





    



 
(7) 

Lower-level problem/ manufacturer problem: 

 
, ,

min max

MAX  [ ( , , ) ] ( ) ( )( )

                                           ( ) ( ) ( ) ( )

S.T:

, , , , ,

d d
M d d r r d d d

p z w

d d d d d d d

d d d d d d d d d

E w p z w c z p c

p s w z w v z

c w w p a z z b p p p p

        

      

     

 
(8) 

In the upper level problem, to ensure the profitability of the retailer, 

we require mr=pr-w≥0 ; also the prices must be in the range [pr
min

,
 

pr
max

].  In the lower level problem, the constraint c≤w is to guarantee 

the profitability of the manufacturer; also we require w≤pd   preventing 

the retailer from buying his/her needed products from the online store 

rather than through the manufacturer. The amount of safety stock in 

channel ii+r, d needs to be in the range [ai, bi], based on the 

assumptions in both problems. 

Solution approach to the dual retailer-Stackelberg problem 

The optimization problem of the lower-level problem considers mr and 

zr as parameters and obtains the optimal values of selling price pd, 

safety stock zd and wholesale price w which depend on mr and zr. The 

upper-level problem obtains the optimal value of mr and zr using the 

optimal values  pd , zd and w  that are computed in the lower-level 

problem. It is not possible to solve the bi-level problem (5)-(6) in this 

form. A common approach to solve a bi-level problem, as stated by 

Colson et al. (2005), is to replace  Karush-Kuhn-Tucker (KKT) 
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conditions of the lower-level problem when it is a convex 

optimization and yields a single-level reformulation of the problem. 

The objective function of our lower-level problem is a 

maximization one; then to use KKT conditions, it is enough to show 

that it is joint concave in its decision variables pd , zd and w .   

 Lemma1. The manufacturer profit function in the lower level problem 

of dual retailer-Stackelberg model is joint concave of variables pd , zd and 

w.   

Proof. 

A multivariate function f(x1, x2, …, xn) with continuous partial 

derivatives and cross partial derivatives on a convex open set S is 

concave if and only if its hessian matrix H(x) is negative semidefinite 

for all x ∈ S. Following this rule, it is enough to show that: (-1)
k 
Dk>0 

k= 1, 2, 3    where Dk is k-order leading principal minor of hessian 

matrix. We form the hessian matrix of manufacturer profit function as 

follow: 

2 (1 ) 2 2 1 ( )

( , , ) 2 2 2 1

1 ( ) 1 ( ) ( )

d d

d d

d d d d d d d

k F z

H p w z k

F z p s v f z
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  

    
 

   
 
     

 (9) 

We write the hessian matrix of manufacturer profit as sum of two 

hessian matrices as follow: 

1 2( , , ) ( , , ) ( , , )d d d d d dH p w z H p w z H p w z    

where  

1
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d d d d d d d
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  

    
 

   
 
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, 

2

2 0 0

( , , ) 0 2 0
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The sum of two negative semidefinite matrices is still negative semi-

definite; then it is enough to show that both H1(pd, w, zd) and H2(pd, w, zd) 

are negative semi-definite. 
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For H1(pd, w, zd), we have: 
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0

 



  

Then, H1(pd, w, zd) is negative semi-definite. For H2(pd, w, zd), we 

have: 

1

1( 1) 2 0D     

2 2

2

2 0
( 1) 4 0

0 2
D







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
 

3

3

2 0 0

( 1) 0 2 0 0

0 0 0

D







     

Then, H2(pd, w, zd)is negative semi-definite. 

Proof is complete. 

As is shown in Lemma 1, the lower level problem is a concave 

maximization problem in terms of the variables pd, w and zd. As a 

result, we write the Karush–Kuhn–Tucker optimality conditions to 
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convert the original bi-level model (5)-(6) into an equivalent single-

level optimization model. 

 A necessary and sufficient condition for pd, w and zd to be optimal 

solutions to the competitor’s problem is that there exist Lagrangian 

multipliers (1, 2, 3, 4) which satisfy the following system: 
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(10) 

Using the system of (10), we write the single-level problem of dual 

retailer-Stackelberg supply chain as follow: 
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Single-level Problem: 
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(11) 

α -Branch and Bound (α-BB) algorithm to solve the single-level 

problem 

The single level formulation (11) is nonconvex due to its stationarity 

and complementarity constraints. For its solution, we employ the 

deterministic global optimization algorithm, α -Branch and Bound (α-

BB). This algorithm was introduced by Androulakis et al. (1995) and 

then improved by Adjiman et al. (1998). The efficiency of this 

algorithm in relation to other methods is reported in Androulakis et al. 

(1995).  

This algorithm guarantees convergence to a point near enough to 

the global minimum for the twice-differentiable nonlinear problems.  

The algorithm is iterative in a way that each iteration includes 

calculation of a lower bound and an upper bound. The lower bound is 

obtained by creating valid convex under-estimators for the nonconvex 

functions in the problem. The resulting convex nonlinear problem can 

be solved by global optimality. Solving the original problem locally 

gives an upper bound. 
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The convergence of BB  algorithm to the global minimum of 

the problem is the result of the generation of a sequence of non-

decreasing best lower bounds and non-increasing best upper bounds.  

The original problem needs a preprocessing step to be prepared for 

the α-Branch and Bound algorithm that is discussed in detail in the 

next subsection. 

α -Branch and Bound (α-BB) preprocessing step 

In the preprocessing step of the algorithm, we need to construct valid 

convex under-estimators for all the problem functions. All problem 

terms are categorized into two classes: (1) terms that have a special 

structure such as bilinear, trilinear, fractional, fractional trilinear, 

univariate concave terms and (2) generic nonconvex terms, f(x). Then, 

a convex under-estimator is generated for each term in all classes 

except for linear and convex terms. The relaxed problem is obtained 

by replacing all of its grouped functions with their valid convex 

under-estimators. The terms of special structure have distinctive tight 

convex under-estimators. However, the convexification procedure of 

the terms in the general nonconvex class is different from that in the 

other classes in the sense that it requires a more challenging and 

computationally severe method referred to as αcalculations. 

We need to notice that the solution of (11) depends on the 

distribution function of random variables εii=r, d. For simplicity, we 

assume that these random variables of demand functions are 

uniformly distributed within [ai, bi]i=r, d. With this assumption, it is 

clear we would have: 
2 21
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z bz

b a

 
    

  

and 
2 21

( )
2 2

i i

i i

a z
z az

b a

 
    

  

 ,i r d  . 

Now we convert our single level problem to a minimization 

problem and then, as stated in preprocessing step of α-BB algorithm, 

group all involving functions of the problem: 

Single-level Problem with grouped functions (P): 

 
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It is worth nothing that in preprocessing step we considered each of  

i(zi) and i(zi) as a decision variable and then defined them as four 

constraints.  

Fortunately, the problem (12) doesn’t have any general nonconvex 

terms and we don’t need any α calculations. The nonconvex terms of 
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problem (12) are just of bilinear type and have customized convex 

lower bound that is stated in Theorem 1.   

Theorem 1. The tightest convex lower bound of a bilinear term xy 

over the domain [x
L
, x

U
] [y

L
, y

U
] is obtained by using a new variable 

 which changes every presence of xy  in the problem and meets the 

following condition. 

 max ;L L L L U U U Ux y y x x y x y y x x y       (13) 

This lower bound can be converted to two linear inequality 

constraints in the problem: 

L L L L

U U U U

x y y x x y

x y y x x y





  
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 (14) 

Proof.  See Al-Khayyal and Falk (1983) or Adjiman et al. (1998). 

To use theorem 1, we need to have the bounds of variables that are 

participating in the bilinear terms. We summarize the variable bounds 

in Table 2. 

Table 2. Variable bounds in the α-BB algorithm 

Variable pi  zi  w  r r(zr) r(zr) I 

Lower-

bound 
pi 

min  zi
min  c  

a-αkpr
max+β(pd

min-pr
max) 

 
0 0 0 

Upper-

bound 
pi 

max zi 
max pmin 

a-αkpr
min+β(pd

max-pr
min) 

 
A A 

i   

 

where 
2 21
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r r
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a b
A a b
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  
    

   
and  min min minmin ,r dp p p .  

Using Theorem 1 and variable bounds of Table 2, we replace each 

bilinear nonconvex term of problem (12) with its equivalent new 

variable and add the necessary constraints to construct their valid 

convex under-estimator.  

We define new variable 1
,
 2, …, 13 and their necessary 

conditions as follow: 
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The relaxed single-level problem (R) is the problem (12) that its 

bilinear terms are replaced by ii=1, …,13 and also consists of 

necessary inequality constraints of these variables. 

α-Branch and Bound (α-BB) algorithm steps  

In this section we summarize the α-BB algorithm, as stated in 

Androulakis et al. (1995), to solve our problem. However, the 

following algorithm doesn’t include α calculations and updates 

because we had just bilinear terms with customized lower bound. 

STEP 1 – Solve initialization 

1. Two tolerances εc and εf for convergence and feasibility are 

selected.  

2. In this step, the iteration counter Iter takes the value of one. 
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3. The variable bounds for this first step x
L, Iter

, x
U, Iter

 are set to 

global ones x
L
, x

U
.  

4. A lower and an upper bound (LBD, UBD) are initialized for the 

global minimum of (P).  

5. An initial point x
c, Iter

 is selected.  

STEP 2 – Obtain a local solution for nonconvex NLP and upper 

bound updating 

In this step, within the variable bounds x
L
, x

U
, the problem (P) is 

solved locally. We can use any commercial solvers such as MINOS, 

CONOPT, and KNITRO. If the solution 
Iter

Localf  of (P) is feasible with 

adopted tolerance εf, the UBD is updated as follow: 

min( , )Iter

LocalUBD UBD f  (15) 

STEP 3 – Dividing current bound rectangle 

The rectangle bound [x
L, Iter

, x
U, Iter

] is divided into the following two 

rectangles r= 1, 2 as follow: 

, , , ,

1 1 1 1

, , , ,

, ,

, , , ,

1: , 2 :
2 2

Iter Iter Iter Iter

Iter Iter

L Iter U Iter L Iter U Iter

L Iter U Iter L Iter U Iter

L Iter U Iterl l l l

l l

L Iter U Iter L Iter U Iter

N N N N

x x x x

x x x x
r rx x

x x x x

   
   
   
    

    
   
   
   
      

 
(16) 

where l
Iter

 indicates the variable with the longest side in the initial 

rectangle: 

, ,argmax( )Iter U Iter L Iter

i i
i

l x x   (17) 

STEP 4 - Solution of (R) inside both ranges 1,2r   

In this step, inside both sub-rectangles ( 1,2r  ), the convex problem 

(R) is solved. If a solution  
,r Iter

soll  is less than the UBD, then it is 

stored. Its solution point is named as 
,r Iter

solx . 
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STEP 5 - Update Iter and LBD 

1. The iteration counter is increased by one, 1Iter Iter  . 

2. LBD is updated to the minimum solution of previous iterations. 

3. The selected solution is erased from the stored set. 

', ' r Iter

solL lBD  where ', ' ,

,
min   1,2;  1,..., -1r Iter r I

sol sol
r l

l l r I Iter    

STEP 6 - Update Current Point xc, Iter and Current Bounds xL, Iter, xU, Iter 

on x  

The current point is selected to be the solution point of the previously 

found minimum solution in STEP 6, 
, ', 'c Iter r Iter

solx x and the current 

rectangle becomes the sub-rectangle containing the previously found 

solution. 
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(18) 

 

STEP 7 - Check for Convergence 

If   cUBD LBD    , then return to STEP 2  

Otherwise, we reached to the adopted convergence tolerance, c . 

The global minimum solution and solution point are: 
* , "

* , "

c Iter

c Iter

f f

x f




 

where  ," arg , 1,...,c I

I

iter f UBD I Iter    

We linked MATLAB R2015a with GAMS 24.5 to code the 

solution procedure. All of the computations have been performed on a 
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personal computer with AMD A10, 2.5 GHz and 8.00 GB RAM. The 

numerical results of the model are summarized in the next section. 

Numerical results and managerial insights 

In this section, we report numerical experiments to investigate the 

equilibrium point of a decentralized retailer-Stackelberg dual-channel 

supply chain.   

The first set of experiments analyzes how the different channel 

prices and profits are influenced by customers’ channel preference (a). 

In this experiment, we show that the online store may be beneficial to 

the traditional retailer. We obtain a Pareto-range of customers’ 

channel preference that shows all supply chain members benefit from 

the online store.  

The second experiment is focused on analyzing the Pareto-zone 

and the simultaneous impact of customers’ channel preference (a) and 

relative price sensitivity (k) on it. Finally, in the last part we 

investigate the impact of model parameters on the Stackelberg-

equilibrium. 

The impact of customer’s channel preference (a) on pricing strategies 

and profit functions 

Consider a supply chain with = 10000, k= .45, α= 60, vi= si =5, β= 

10, εiUniform [0, 40]. As it is shown in Figure 2-(1), with the 

increment of the value a , the price of physical retailer is increased. In 

situations when most customers in sales channel prefer to buy 

physically (high values of a ), the new online store is not a serious 

threat to the retailer. In this case, the manufacturer is to appeal to 

customers’ needs to have a price decrease. 

As it is clear in Figure 2-(1),  we have three different ranges for a:   

I. When a≤.04, the online store is much more appealing to the 

customers. As a result, the physical retailer to attract more 

customers has no choice but to set his/her price equal to the 

wholesale price.  

II. When .04<a<.65, almost both channels have their special 

customers. In this scenario, the retailer sets his/her price greater 

than wholesale price pr>w and as a result obtains an increasing 

profit margin. In this case, the competition between sales 



Analysis of a Dominant Retailer Dual-Channel Supply Chain under … 583 

channels is not so severe to force the manufacture to choose 

pd=w.  

III. When a≥.65 physical retailer is much more appealing to the 

customers and the manufacturer to obtain customers has no 

choice but to set pd=w.  

To compare the manufacturer and retailer’s profit in different cases 

DRS and SRS, we define profit differences by r= r
DRS

-r
SRS

 and 

m= m
DRS

-m
SRS

,
 
respectively. As mentioned earlier, the Pareto-

zone is a range of parameter a in which the manufacturer can open a 

direct online channel without any concerns about conflict due to the 

competition between his/her owned online store with the traditional 

channel. As it is shown in Figure 2-(2), the range of a≥.70727 is a 

Pareto-zone because for this range we have m≥0 and r≥0. 

 

Fig. 2. A schematic presentation of Pareto-zone 

Pareto-zone analysis 

In a market with low sensitivity to the price of physical retailer and 

high sensitivity to the online store’s price, the manufacturer chooses 

low price for the online store to attract customers. Consequently, 

regarding the fact that always w≤pd, the retailer buys the product with 

lower price and earns more profit. Consider a supply chain with = 

10000, k= .45, α= 60, vi= si =5, β= 10, εiUniform [0, 40] to perform 

this analysis. 
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As it is clearly shown in Fig. 3, for (k=.25), there is a wide Pareto-

zone. In this case, even when the parameter of a  has a relatively low 

value, online store is beneficial to both of the manufacturer and the 

retailer.  When the customers become more sensitive to retail price, 

for example k=.5, the value of a needs to be relatively high to have 

r≥0 and it results in a smaller Pareto-zone. For very high values of 

k, the retailer cannot benefit from the new online store because in this 

situation the price of online store is much less than the retailer price 

and consequently the online store attracts most of the customers.  
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Fig. 3. Pareto-zone analysis 

Managerial Insight 1. Stackelberg-equilibrium of the retailer 

Stackelberg dual-channel is concluded as follow: 

I. When the online store is much more appealing to the customers 

and the value of customers’ channel preference parameter is 

very low, the retailer to interest customers should decrease its 

price. We assume that the game players are rational; then the 
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physical retailer would not cut down the price below the 

wholesale price. Even by setting pr=w, the product is distributed 

among customers only through the online store.  

II. For an interval range of the customers’ channel preference, both 

channels fairly have their customers and, thus, products are sold 

through both sales channels. 

III. When the physical store is much more appealing to the 

customers and the parameter a has high value, the manufacturer 

sets pd=w to interest customers to online buying. However, if the 

customers’ channel preference for the physical store be very 

high, even by setting pd=w the online store will not have any 

customers. 

Managerial Insight 2. Comparison of the profit function of the 

retailer for the scenarios of single retail Stackelberg and dual retail 

Stackelberg shows that in cases that the value of customers’ channel 

preference is very low, by opening a new online store the profit of the 

retailer would be zero and he/she would not survive in the market. Then 

in this situation, the retailer has a better performance in the single channel 

sales network. 

In summary, there are two different scenarios: 

1. When the value of customers’ channel preference parameter is 

very low, the retailer will exit from the market. 

2. When the parameter a is upper than a threshold value, the 

retailer would benefit from the dual channel in case that 

parameter β be low. In this situation, the customer switches from 

the traditional retailer to the online store which is relatively low. 

As a result, the online store is not a serious competitor to the 

traditional retailer and the game between the manufacturer and 

the retailer will end in favor of the retailer. 

Sensitivity analysis  

In this part of the numerical analysis, we report the equilibrium results 

for three different examples in Table  and clarify them as follow: 

I. Results of example 1 in Table 3 show that leader-retailer sets 

higher sale prices when the value of a goes up. The situation for 

the manufacturer is opposite.  The manufacturer decreases the 

price of online store to interest more customers to online buying. 
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II. Results of examples 1 and 2 of Table 3 show that with the 

increment of price sensitivity, the retailer has no choice but 

decreasing his/her price to stop losing customers. The 

manufacturer takes advantage of this situation and sets a higher 

wholesale and online store prices in order to increase his/her 

profit.  

III. Results of examples 1 and 3 of Table 3, which have different   

values, reveal that for high values of β, a minor price difference 

between the two channels causes a great number of customer 

switches. Then in such a situation, the price of channels closes to 

each other. 

As the results of examples in Table 3 show, when the online store 

is much more attractive to the customers (a=6%in example 1, a=4% in 

example 2 and a=6% in example 3), the retailer to interest more 

customers should lower his/her price. Even by setting pr=w, the value 

of r is zero and as a result the expected demand of retailer is E[Dr]= 

E[εr]=20. This expected demand is not enough to confront the cost of 

shortage inventory; then, the profit of the retailer is negative and the 

retailer would not survive in the supply chain. As the value of a  

increases, the physical retailer increases his/her price to take 

advantage of customers’ channel preference. The situation for the 

online store is opposite. The online store cuts down his/her price to 

persuade the customers to buy online. When the physical retailer is 

much more attractive to customers (92% in example 1, 64% in 

example 2 and 100% in example 3), the manufacturer has no choice 

but to set
RS RS

dp w
. However, sometimes even this policy would not 

bring any customer to the online store and we would have d=0. 

When the competition pressure that is exerted through direct online 

channel is high (64%in example 1,35% in example 2 and 61% in 

example 3), the retailer to allure more customers has to set his/her 

price lower than the online store’s price. 

Our numerical results match with results in Cai (2010). Cai (2010) 

investigates a manufacturer-Stackelberg scenario and shows the 

existence of a Pareto-zone, and in this paper we show that the same 

feature exists in a retailer-Stackelberg scenario. 
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Table 3. Equilibrium solution of retailer-Stackelberg game 

Retailer-Stackelberg dualchannel example1 1:  = 10000, k= .75, α= 60, β= 10, c=15, vi= si =5  

a pr w pd r d zr zd r m 
0.06 50.24623 50.24623 212.9804 0 4577.951 3.978851 31.50227 -90.049 908542.8 

0.1 54.16109 51.06204 205.9246 80.38592 4393.496 4.832965 31.05264 172.4492 845002.9 

0.2 64.62607 52.42154 188.2841 328.4077 3939.157 6.86103 29.92554 3988.075 697895.9 

0.3 75.08478 53.77999 170.6403 576.7399 3484.841 8.322411 28.56542 12341.23 567486.4 

0.4 85.54083 55.13907 152.993 825.1848 3030.583 9.42522 26.89115 25225.74 453785.5 

0.5 95.9967 56.50034 135.3415 1073.596 2576.43 10.28641 24.77914 42633.89 356801.7 

0.6 106.4546 57.86559 117.6833 1321.829 2122.463 10.97672 22.03124 64554.29 276544.4 

0.64 110.6389 58.41334 110.6172 1421.031 1940.959 11.21571 20.68534 74582.04 249127.6 

0.7 116.9172 59.23736 100.0133 1569.689 1668.84 11.54136 18.30794 90968.07 213026.7 

0.8 127.388 60.61958 82.3189 1816.851 1215.907 12.01043 12.97361 121840.5 166271 

0.9 137.873 62.01893 64.56644 2062.648 764.5693 12.40484 4.675812 157098.1 136321.7 

0.91 138.9227 62.16019 62.78504 2087.103 719.6009 12.44081 3.583558 160859.6 134254.3 

0.92 133.0209 65.9739 65.9739 2543.589 480.8616 14.09792 3.031502 171125.3 155813.7 

1 139.5924 62.04702 62.04702 2942.89 0 15.31327 3.223362 228962.3 132719.5 

Retailer-Stackelberg dualchannel example1 2: = 10000, k= .45, α= 60, β= 10, c=15, vi= si =5 

a pr w pd r d zr zd r m 

0.04 45.52339 45.43447 128.1696 0 4543.94 4.429128 27.38095 -88.8609 515999.4 

0.1 56.27661 48.05699 122.7427 145.1928 4284.829 6.456997 25.96838 1149.459 468268 

0.2 74.17481 52.42097 113.6916 392.448 3853.009 8.527793 23.31593 8597.975 396685.6 

0.3 92.0617 56.78355 104.6343 640.0607 3421.34 9.791349 20.20399 22764.2 335092.3 

0.35 101.0041 58.96581 100.1033 763.8832 3205.598 10.25446 18.43596 32361.9 308047.2 

0.4 109.9467 61.14928 95.57042 887.6768 2989.939 10.64162 16.49931 43633.18 283505.6 

0.5 127.835 65.52141 86.49735 1135.079 2558.964 11.25158 12.01237 71185.93 241939.8 

0.6 145.7307 69.90313 77.41022 1382.067 2128.667 11.70912 6.462759 105395.4 210411.8 

0.64 140.6572 76.74915 76.74915 1963.176 1706.358 15.49965 2.605892 126008.4 228689.2 

0.7 148.1929 74.57466 74.57466 2262.609 1275.219 16.74159 2.681876 167266.3 212860.5 

0.8 160.7481 70.94896 70.94896 2761.808 556.6759 18.55276 2.818928 248975.3 187729.8 

0.9 173.2991 67.32166 67.32166 3261.149 0 20.10161 2.970812 346863.8 164166.6 

1 185.8469 63.69304 63.69304 3760.596 0 21.4414 3.140061 460929.6 142174.6 

Retailer-Stackelberg dual channel example1 3: = 10000, k= .75, α= 60, β= 30, c=15, vi= si =5 

a pr w pd r d zr zd r m 

0.06 70.02166 70.02166 153.8081 0 4579.287 2.855729 23.09018 -92.8594 635767.7 

0.1 72.34526 70.13742 150.1746 79.34457 4412.499 3.373115 22.65022 89.20373 602984.6 

0.2 78.73242 69.84988 141.0916 327.8165 4012.851 4.791269 21.61481 2855.766 526051.2 

0.3 85.11755 69.56191 132.0067 576.3839 3613.227 5.996066 20.43677 8951.02 456227.8 

0.4 91.50135 69.27385 122.9199 824.9949 3213.647 7.032314 19.08431 18372.48 393518.7 

0.5 97.88437 68.98602 113.831 1073.603 2814.135 7.933068 17.51544 31117.27 337927.9 

0.6 104.2671 68.6987 104.7397 1322.161 2414.724 8.72326 15.67353 47181.83 289459.1 

0.61 104.9054 68.67001 103.8304 1347.012 2374.791 8.796978 15.47155 48970.71 285004 

0.7 110.6499 68.41219 95.64524 1570.615 2015.461 9.42208 13.48025 66561.47 248116.1 

0.8 117.0331 68.12676 86.54618 1818.901 1616.416 10.04458 10.82401 89249.71 213903.6 

0.9 123.417 67.84263 77.44022 2066.928 1217.702 10.60283 7.540055 115237.1 186827.6 

1 122.8807 72.02985 72.02985 2944.84 445.0791 11.96818 2.776627 150096.2 195056.6 

Conclusion 
We study situations when a retailer-Stackelberg dual-channel supply 

chain can improve the performance for the retailer as well as for the 

manufacturer, in comparison with a single retail-channel supply chain. 

In particular, we used a bi-level programming model to find the 

Stackelberg equilibrium point of wholesale and retail prices as well as 

order quantities for a retailer-dominant dual-channel supply chain. The 

results show that when the online store is much more appealing to the 

customers, the retailer to interest customers should decrease his/her 

price. For an interval range of the customers’ channel preference, both 

channels fairly have their customers and, thus, products are sold 
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through both sales channels. At last, we show that when the physical 

store is much more appealing to the customers and the parameter a has 

high value, the manufacturer sets pd=w to interest customers to online 

buying. 

The results also show that an online channel is not always 

detrimental to a retailer and there might be a range of customers’ 

channel preference that the profit for both the retailer and 

manufacturer is improved; we call this range a Pareto-zone.  Our 

results can provide efficient guidance for the manufacturer’s decision 

on adopting a dual channel structure. At last, we also investigate the 

impact of the customers’ channel preference on the equilibrium. This 

investigation shows that if customers’ preference for the retailer is 

very low, the retailer will exit from the market and for a range of 

customers’ channel preference, both the manufacturer and the retailer 

will compete to attract more customers. 

In this paper we investigated a situation with one manufacturer and 

one retailer. A potential extension of this paper is to examine the 

interaction among multiple retailers and manufacturers.  Another 

interesting study might be incorporating risk in the study and 

considering the retailer as a risk-averse member. 
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Appendix 1 
Average salvaged inventory is obtained as follow: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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Now to solve second integral, we use integration by parts as follow: 

u= ,dv= ( )
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So we have: 

( ) ( ) ( ) ( ) ( )
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Average shortage inventory is obtained as follow: 

( ) ( ) ( )
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Using integration by parts for first integral, we would have: 
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