AlRashidi, M., & El-Naggar, K. (2010).“Long term electric load forecasting based on particle swarm optimization”, Applied Energy,vol.87, NO. 1, 320-326.
Ardakani, F., & Ardehali, M. (2014).“Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types”. Energy, 65, 452-461.
Assareh, E., Behrang, M., Assari, M., & Ghanbarzadeh, A. (2010). “Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran”. Energy, VOL. 35, NO. 12, 5223-5229.
Azadeh, A., & Tarverdian, S. (2007). “Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption”. Energy Policy, VOL. 35, NO. 10, 5229-5241.
Canyurt, O. E., & Ozturk, H. K. (2008). “Application of genetic algorithm (GA) technique on demand estimation of fossil fuels in Turkey”. Energy Policy, VOL. 36, NO. 7, 2562-2569.
Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms: John Wiley & Sons.
Karbassi, A., Abduli, M., & Mahin Abdollahzadeh, E. (2007). “Sustainability of energy production and use in Iran”. Energy Policy, VOL. 35, NO. 8, 5171-5180.
Kıran, M. S., Özceylan, E., Gündüz, M., & Paksoy, T. (2012). “A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey”. Energy Conversion and Management, VOL. 53, NO. 1, 75-83.
Labandeira, X., Labeaga, J. M., & López-Otero, X. (2011). “Energy demand for heating in Spain: An empirical analysis with policy purposes”. WP, 6, 2011.
Lee, Y.-S., & Tong, L.-I. (2011). “Forecasting energy consumption using a grey model improved by incorporating genetic programming”. Energy Conversion and Management, VOL. 52, NO. 1, 147-152.
Leticia, B., Boogen, N., & Filippini, M. (2012). “Residential electricity demand for Spain: new empirical evidence using aggregated data”: CEPE Center for Energy Policy and Economics, ETH Zurich.
Madlener, R., & Alt, R. (1996). “Residential energy demand analysis: an empirical application of the closure test principle”. Empirical Economics, VOL. 21, NO. 2, 203-220.
Ministry of Energy (MOE). Energy balance annual report. Tehran, Iran. (2012).
Ozturk, H. K., & Ceylan, H. (2005). “Forecasting total and industrial sector electricity demand based on genetic algorithm approach: Turkey case study”. International journal of energy research, VOL. 29, NO. 9, 829-840.
Poyer, D. A., &Williams, M. (1993). “Residential energy demand: additional empirical evidence by minority household type”. Energy Economics, VOL. 15, NO. 2, 93-100.
Shakouri.G. H & Kazemi, A. (2011). “Energy demand forecast of residential and commercial sectors: Iran case study”. proceedings of the 41st international conference on computers & industrial engineering 23-25 October, Los Angeles, California, USA.
Sözen, A., Gülseven, Z., & Arcaklioğlu, E. (2007). “Forecasting based on sectoral energy consumption of GHGs in Turkey and mitigation policies”. Energy Policy, VOL. 35, NO. 12, 6491-6505.
Ünler, A. (2008). “Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025”. Energy Policy, VOL. 36, NO. 6, 1937-1944.