Evaluating the Efficiency of Iran’s Provincial Tax Offices and Ranking Them by DEA/AHP

Document Type: Research Paper


Faculty of Economic, Management and Social Science, Management Department, Shiraz University, Shiraz, Iran


In this paper, we have tried to utilize a combination of qualitative and quantitative model for evaluating and prioritizing the efficiency of Iran’s provincial tax offices from 2011 to 2014. For this purpose, the tax offices in each province have been considered as a decision-making unit (DMU) that has several inputs and outputs. At first, the provinces were divided into less developed and more developed provinces, then the efficiency of them was calculated by Data Envelopment Analysis (DEA) model and related values to improve efficiency of inefficient provinces have been offered. By using AHP/DEA model, the provinces have been ranked. Offering the complete rankings of tax offices and utilizing the advantages of both quantitative and qualitative methods for prioritizing the decision making units are the major advantages of this model. The results show that among developed provinces, Isfahan in 2011 and 2014, and Markazi in 2012 and 2013 have the highest ranks. Also, among less developed provinces, West Azarbaijan in 2011, 2012 and 2013, and Kordestan in 2014 have the top ranks. 


Article Title [Persian]

ارزیابی کارایی ادارات کل امور مالیاتی استان‌های مختلف کشور و رتبه‌بندی آن‌ها: روش تحلیل پوششی داده‌ها و فرایند تحلیل سلسله‌مراتبی (DEA/AHP)

Authors [Persian]

  • علی محمدی
  • مریم صادقی
  • پیام شجاعی
  • آمنه رضایی
دانشکدة اقتصاد، مدیریت و علوم اجتماعی، گروه مدیریت، دانشگاه شیراز، شیراز، ایران
Abstract [Persian]

در این مقاله تلاش می‌شود تا با استفاده از مدل تلفیقی کمّی و کیفی، کارایی ادارات کل امور مالیاتی استان‌های کشور ارزیابی و استان‌های کشور در بازة زمانی سال‌های 1389-1392 رتبه‌بندی شود. به‌همین منظور، ادارات کل امور مالیاتی هر استان  واحد تصمیم‌گیرنده قلمداد می‌شوند که چندین نهاده و ستانده دارند. نخست، کارایی استان‌ها بر اساس تقسیم‌بندی آن‌ها به استان‌های توسعه‌یافته و کمتر توسعه‌یافته به‌روش تحلیل پوششی داده‌ها محاسبه شده و مقادیر لازم برای کاراکردن استان‌های ناکارا پیشنهاد شده است. در ادامه برای رتبه‌بندی استان‌ها، از رویکرد مقایسه‌های زوجی در روش فرایند تحلیل سلسله‌مراتبی استفاده می‌شود. ارائة رتبه‌بندی کامل ادارات کل امور مالیاتی تحت مطالعه و بهره‌گیری از مزایای هر دو نوع روش عینی و ذهنی رتبه‌بندی واحدهای تصمیم‌گیرنده از مزایای این الگوی پیشنهادی است. نتایج نشان می‌دهد که از بین استان‌های توسعه‌یافته، استان اصفهان در سال‌های 1389 و 1392 و استان مرکزی در سال‌های 1390 و 1391 دارای رتبة یک و در گروه استان‌های کمترتوسعه‌یافته، استان آذربایجان‌غربی در سال‌های 1389، 1390 و 1391 و استان کردستان در سال 1392 رتبة یک را داشته‌اند.

Keywords [Persian]

  • تحلیل پوششی داده‌ها (DEA)
  • فرایند تحلیل سلسله‌مراتبی (AHP)
  • کارایی
  • مالیات
  • مدل تلفیقی DEA/AHP
Alamtabriz, A., Saiedy, H., & Deilami Moezi, S. (2011). Using composed approach of DEA and AHP for efficiency evaluation faculties of Shahid Beheshti University. Journal of Management Futures Research (Journal of Management Research), 23(89), 25-36. (In Persian)
Arab Mazar, A., & Mousavi, S. Y. (2010). The efficiency calculation and tax efforts made by tax organization of different provinces of the country: Data envelopment analysis. Journal of Economic Research Review, 10(37), 139-165. (In Persian)
Arabmazar, A. A., & Dehghani, A. (2010). An estimation of business and profession/corporate income tax efficiency in provincial tax offices. Journal of Tax Research, 7(17), 45-64. (In Persian)
Askari, A., & Charkhkar, M. (2015). The determination and assessment of the relational efficiency indicators of Tehran City’s and Provinces’ tax affairs general directorates with data envelope analysis approach (DEA). Journal of Tax Research, 23(27), 36-62. (In Persian)
Azadeh, A., Ghaderi, S. F., & Izadbakhsh, H. (2008). Integration of DEA and AHP with computer simulation for railway system improvement and optimization. Journal of Applied Mathematics and Computation, 195, 775-785.
Barros, C. P. (2005). Performance measurement in tax offices with a stochastic frontier model. Journal of Economic Studies, 32(6), 497-510.
Cai Y., & Wu, W. (2001). Synthetic financial evaluation by a method of combining DEA with AHP. International Transactions in Operational Research, 8(5), 603-609.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(11), 429-444.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of Royal Statistical Society, 120(3), 253-281.
Forsund, F. R., & Edvardsen, D. F. (2015). Productivity of tax offices in Norway. Journal of Productivity Analysis, 43, 269-279. Retrieved from http://econpapers.repec.org/RePEc:kap:jproda:v:43:y:2015:i:3: p:269-279.
Gholipour, R., Jandaghi, G., & Rajaei, R. (2014). Contractor selection in MCDM context using fuzzy AHP. Iranian Journal of Management Studies, 7(1), 151-173.

González, P. E. B., & Rubio, E. V. (2013). The Efficiency of the regional management centres of the tax administration in Spain. Journal of US-China Public Administration, 10(1), 49-56. Retrieved from http://www.davidpublisher.com/index.php/Home/Article/index?id=7305.html.
Katharaki, M., & Tsakas, M. (2010). Assessing the efficiency and managing the performance of Greek tax offices. Journal of Advances in Management Research, 7, 58-75. Retrieved from http://www. emeraldinsight.com/doi/abs/10.1108/09727981011042856.
Korpela, J., Lehmusvaara, A., & Nisonen, J. (2007). Warehouse operator selection by combining AHP and DEA methodologies. International Journal of Production Economics, 108, 135-142.
Lee, C. C. (2009). Analysis of overall technical efficiency, pure technical efficiency and scale efficiency in the medium-sized audit firms. Expert Systems with Applications, 36, 11156-11171.
Li, C. C., & Chen, C. Y. (2004). Incorporating value judgment in to DEA to improve decision quality for organization. The Journal of American Academy of Business, 3, 423-427.
Lin, M. I., Lee, Y. D., & Ho, T. N. (2011). Applying integrated DEA/AHP to evaluate the economic performance of local governments in China. European Journal of Operational Research, 209, 129-140.
Moesen, W., & Persoons, A. (2002). Measuring and explaining the productive efficiency of tax offices: A non-parametric best practice frontier approach. Tijdschrift voor Economic en Management, 47(3), 399-416.
Monjazeb, M., & Moosavi, S. E. (2015). The impact of tax on oil company’s performance and tax organization efficiency (data envelopment analysis approach). Journal of Tax Research, 23(27). 195-210. (In Persian)
Monthly Reports of Economic Indices, The central bank of I.R.I. (In Persian)
Mosavi Jahromi, Y., & Zayer, A. (2007). Comparison of two multiple attribute decision making models case: Ranking the Iran’s provinces based on the factors affecting tax capacity. Journal of Economic Research Review, 4, 15-44. (In Persian)
Performance-Based Planning of the Iranian National Tax Administration. (In Persian)
Singh, R., & Agarwal, S. (2012). Return and assessment perception of assesses under VAT. Iranian Journal of Management Studies, 5(2), 31-47.
Sinuany-Stern, Z., Mehrez, A., & Hadad, Y. (2000). An AHP/DEA 

methodology for ranking decision making units. International Transactions in Operations Research, 7(2), 109-124.
Statistical Yearbook of Iran, Statistical center of Iran. (In Persian)
Talebnia, G., Hassasyeganeh, Y., Vakilifard, H., & Mohammadipour, R. (2014). Identification and prioritization of variables for implementation of performance-based budgeting in Iranian national tax administration. Journal of Tax Research, 22(22), 188-220. (In Persian)
Tseng Y., & Lee T. (2009). Comparing appropriate decision support of human resource practices on organizational performance with DEA/AHP model. Expert Systems with Applications, 36, 6548-6558.
Vlassenko, I. (2001). Evaluation of the efficiency and fairness of British, French and Swedish property tax systems. Property Management, 19(5), 384-416.