[1] Abd Ellah, A. H., & Sultan, K. S. (2005). Exact Bayesian prediction of exponential lifetime based on fixed and random sample sizes. Quality Technology & Quantitative Management, 2(2), 161-175.
[2] Ahmadi, J., & Balakrishnan, N. (2010). Prediction of order statistics and record values from two independent sequences. Statistics, 44(4), 417-430.
[3] Ahmadi, J., & Balakrishnan, N. (2011). Distribution-free prediction intervals for order statistics based on record coverage. Journal of the Korean Statistical Society, 40(2), 181-192.
[4] Ahmadi, J., & MirMostafaee, S. M. T. K. (2009). Prediction intervals for future records and order statistics coming from two parameter exponential distribution. Statistics & Probability Letters, 79(7), 977-983.
[5] Ahmadi, J., MirMostafaee, S. M. T. K., & Balakrishnan, N. (2010). Nonparametric prediction intervals for future record intervals based on order statistics. Statistics & probability letters, 80(21), 1663-1672.
[6] Ahsanullah, M. (1980). Linear prediction of record values for the two parameter exponential distribution. Annals of the Institute of Statistical Mathematics, 32(1), 363-368.
[7] Al-Hussaini, E. K., & Al-Awadhi, F. (2010). Bayes two-sample prediction of generalized order statistics with fixed and random sample size. Journal of Statistical Computation and Simulation, 80(1), 13-28.
[8] Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (1998). Records. New York, NY: John Wiley & Sons.
[9] Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (2008). A first course in order statistics. Society for Industrial and Applied Mathematics.
[10] Asgharzadeh, A., & Fallah, A. (2010). Estimation and prediction for exponentiated family of distributions based on records. Communications in Statistics—Theory and Methods, 40(1), 68-83.
[11] Balakrishnan, N., Beutner, E. & Cramer, E. (2013). Computational aspects of statistical intervals based on two Type-II censored samples. Computational Statistics, 28, 893-917.
[12] Basiri, E., & Ahmadi, J. (2015). Prediction intervals for generalized-order statistics with random sample size. Journal of Statistical Computation and Simulation, 85(9), 1725-1741.
[13] Basiri, E., Ahmadi, J., & Raqab, M. Z. (2016). Comparison among non-parametric prediction intervals of order statistics. Communications in Statistics-Theory and Methods, 45(9), 2699-2713.
[14] Dasgupta, T., & Mandal, A. (2008). Estimation of process parameters to determine the optimum diagnosis interval for control of defective items. Technometrics, 50(2), 167-181.
[15] David, H. A. & Nagaraja, H. N. (2003). Order statistics (3rd ed.). Hoboken, New Jersey: John Wiley & Sons.
[16] Hsieh, H. K. (1997). Prediction intervals for Weibull order statistics. Statistica Sinica, 1039-1051.
[17] Lawless, J. F. (1977). Prediction intervals for the two parameter exponential distribution. Technometrics, 19(4), 469-472.
[18] Raghunandanan, K., & Patil, S. A. (1972). On order statistics for random sample size. Statistica Neerlandica, 26(4), 121-126.
[19] Raqab, M. Z., & Balakrishnan, N. (2008). Prediction intervals for future records. Statistics & Probability Letters, 78(13), 1955-1963.
[20] Soliman, A. A. (2000). Bayes prediction in a Pareto lifetime model with random sample size. Journal of the Royal Statistical Society: Series D (The Statistician), 49(1), 51-62.
[21] Sultan, K. S., & Abd Ellah, A. H. (2006). Exact prediction intervals for exponential lifetime based on random sample size. International Journal of Computer Mathematics, 83(12), 867-878.