Amin, G. R., Toloo, M., & Sohrabi, B. (2006). An improved MCDM DEA model for technology selection. International Journal of Production Research, 44(13), 2681-2686.
Andre, F. J., Herrero, I., & Riesgo, L. (2010). A modified DEA model to estimate the importance of objectives with an application to agricultural economics. Omega, 38(5), 371-382.
Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, N., & Yagiz, S. (2017a). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, 63, 29-43.
Armaghani, D. J., Raja, R. S. N. S. B., Faizi, K., & Rashid, A. S. A. (2017b). Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Computing and Applications, 28(2), 391-405.
Awasthi, A., & Kannan, G. (2016). Green supplier development program selection using NGT and VIKOR under fuzzy environment. Computers & Industrial Engineering, 91, 100-108.
Azadeh, A., Ghaderi, S., & Izadbakhsh, H. (2008). Integration of DEA and AHP with computer simulation for railway system improvement and optimization. Applied Mathematics and Computation, 195(2), 775-785.
Azadeh, A., Zarrin, M., & Salehi, N. (2016). Supplier selection in closed loop supply chain by an integrated simulation-Taguchi-DEA approach. Journal of Enterprise Information Management, 29(3), 302-326.
Azadi, M., Mirhedayatian, S. M., Saen, R. F., Hatamzad, M., & Momeni, E. (2017). Green supplier selection: a novel fuzzy double frontier data envelopment analysis model to deal with undesirable outputs and dual-role factors. International Journal of Industrial and Systems Engineering, 25(2), 160-181.
Banker, R., Chen, J. Y., & Klumpes, P. (2016). A trade-level DEA model to evaluate relative performance of investment fund managers. European Journal of Operational Research, 255(3), 903-910.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Cao, W., & Zhang, X. (2016). Supply chain risk assessment based on support vector machine. RISTI (Revista Iberica de Sistemas e Tecnologias de Informacao), (E5), 310-323.
Çelebi, D., & Bayraktar, D. (2008). An integrated neural network and data envelopment analysis for supplier evaluation under incomplete information. Expert Systems with Applications, 35(4), 1698-1710.
Chen, S. H., & Hsieh, C. H. (1999). Optimization of fuzzy simple inventory models. Proceedings from FUZZ-IEEE'99: IEEE International Conference of the Fuzzy Systems.
Chou, S., & Chen, C.-W. (2017). Supply chain coordination: an inventory model for single-period utility product under fuzzy demand. The International Journal of Advanced Manufacturing Technology, 88(1-4), 585-594.
da Silva, A. F., Marins, F. A. S., Tamura, P. M., & Dias, E. X. (2017). Bi-Objective Multiple criteria data envelopment analysis combined with the overall equipment effectiveness: An application in an automotive company. Journal of Cleaner Production, 157, 278-288.
de Boer, L., & de Boer, L. (2017). Procedural rationality in supplier selection: Outlining three heuristics for choosing selection criteria. Management Decision, 55(1), 32-56.
De, S. K., & Mahata, G. C. (2017). Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. International Journal of Applied and Computational Mathematics, 3(3), 2593-2609.
Demirtas, E. A., & Üstün, Ö. (2008). An integrated multiobjective decision making process for supplier selection and order allocation. Omega, 36(1), 76-90.
Dubey, R., Gunasekaran, A., Papadopoulos, T., Childe, S. J., Shibin, K., & Wamba, S. F. (2017). Sustainable supply chain management: Framework and further research directions. Journal of Cleaner Production, 142, 1119-1130.
Ehsani, E., Kazemi, N., Olugu, E. U., Grosse, E. H., & Schwindl, K. (2016). Applying fuzzy multi-objective linear programming to a project management decision with nonlinear fuzzy membership functions. Neural Computing and Applications, 1-14.
Emrouznejad, A., & Shale, E. (2009). A combined neural network and DEA for measuring efficiency of large scale datasets. Computers & Industrial Engineering, 56(1), 249-254.
Emrouznejad, A., & Yang, G.-l. (2017). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences.
Fallahpour, A., Amindoust, A., Antuchevičienė, J., & Yazdani, M. (2016). Nonlinear genetic-based model for supplier selection: a comparative study. Technological and Economic Development of Economy, 1-18.
Fallahpour, A., Amindoust, A., Antuchevičienė, J., & Yazdani, M. (2017a). Nonlinear genetic-based model for supplier selection: a comparative study. Technological and Economic Development of Economy, 23(1), 178-195.
Fallahpour, A., Olugu, E. U., & Musa, S. N. (2017b). A hybrid model for supplier selection: integration of AHP and multi expression programming (MEP). Neural Computing and Applications, 28(3), 499-504.
Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2015). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 1-19.
Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2016). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing and Applications, 27(3), 707-725.
Fallahpour, A., Olugu, E. U., Musa, S. N., Wong, K. Y., & Noori, S. (2017). A decision support model for sustainable supplier selection in sustainable supply chain management. Computers & Industrial Engineering, 105, 391-410.
Geng, Y., Chen, J., Fu, R., Bao, G., & Pahlavan, K. (2016). Enlighten wearable physiological monitoring systems: On-body rf characteristics based human motion classification using a support vector machine. IEEE Transactions on Mobile Computing, 15(3), 656-671.
Ghasemi, M.-R., Ignatius, J., Lozano, S., Emrouznejad, A., & Hatami-Marbini, A. (2015). A fuzzy expected value approach under generalized data envelopment analysis. Knowledge-Based Systems, 89, 148-159.
Ghosh, A., & Chatterjee, P. (2010). Prediction of cotton yarn properties using support vector machine. Fibers and Polymers, 11(1), 84-88.
GüNeri, A. F., Ertay, T., & YüCel, A. (2011). An approach based on ANFIS input selection and modeling for supplier selection problem. Expert Systems with Applications, 38(12), 14907-14917.
Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 152, 242-258.
Hanafizadeh, P., Khedmatgozar, H. R., Emrouznejad, A., & Derakhshan, M. (2014). Neural network DEA for measuring the efficiency of mutual funds. International Journal of Applied Decision Sciences, 7(3), 255-269.
He, J., Ma, C., & Pan, K. (2017). Capacity investment in supply chain with risk averse supplier under risk diversification contract. Transportation Research Part E: Logistics and Transportation Review, 106, 255-275.
Hosseinzadeh-Bandbafha, H., Nabavi-Pelesaraei, A., Khanali, M., Ghahderijani, M., & Chau, K.-W. (2017). Application of data envelopment analysis approach for optimization of energy use and reduction of greenhouse gas emission in peanut production of Iran. Journal of Cleaner Production.
Ignatius, J., Ghasemi, M.-R., Zhang, F., Emrouznejad, A., & Hatami-Marbini, A. (2016). Carbon efficiency evaluation: An analytical framework using fuzzy DEA. European Journal of Operational Research.
Jauhar, S. K., & Pant, M. (2017). Integrating DEA with DE and MODE for sustainable supplier selection. Journal of Computational Science.
Johnsen, T. E., Miemczyk, J., & Howard, M. (2017). A systematic literature review of sustainable purchasing and supply research: Theoretical perspectives and opportunities for IMP-based research. Industrial Marketing Management, 61, 130-143.
Kaboli, S. H. A., Fallahpour, A., Kazemi, N., Selvaraj, J., & Rahim, N. (2016). An expression-driven approach for long-term electric power consumption forecasting.
Kanal, L. N., & Lemmer, J. F. (2014). Uncertainty in artificial intelligence (Vol. 4). Elsevier.
Karkevandi-Talkhooncheh, A., Hajirezaie, S., Hemmati-Sarapardeh, A., Husein, M. M., Karan, K., & Sharifi, M. (2017). Application of adaptive neuro fuzzy interface system optimized with evolutionary algorithms for modeling CO 2-crude oil minimum miscibility pressure. Fuel, 205, 34-45.
Karsak, E. E., & Dursun, M. (2016). Taxonomy and review of non-deterministic analytical methods for supplier selection. International Journal of Computer Integrated Manufacturing, 29(3), 263-286.
Kazemi, N., Abdul-Rashid, S. H., Shekarian, E., Bottani, E., & Montanari, R. (2016a). A fuzzy lot-sizing problem with two-stage composite human learning. International Journal of Production Research, 54(16), 5010-5025.
Kazemi, N., Ehsani, E., & Glock, C. H. (2014). Multi-objective supplier selection and order allocation under quantity discounts with fuzzy goals and fuzzy constraints. International Journal of Applied Decision Sciences, 7(1), 66-96.
Kazemi, N., Ehsani, E., Glock, C. H., & Schwindl, K. (2015a). A mathematical programming model for a multi-objective supplier selection and order allocation problem with fuzzy objectives. International Journal of Services and Operations Management, 21(4), 435-465.
Kazemi, N., Ehsani, E., & Jaber, M. (2010). An inventory model with backorders with fuzzy parameters and decision variables. International Journal of Approximate Reasoning, 51(8), 964-972.
Kazemi, N., Olugu, E. U., Abdul-Rashid, S. H., & Ghazilla, R. A. B. R. (2015b). Development of a fuzzy economic order quantity model for imperfect quality items using the learning effect on fuzzy parameters. Journal of Intelligent & Fuzzy Systems, 28(5), 2377-2389.
Kazemi, N., Olugu, E. U., Abdul-Rashid, S. H., & Ghazilla, R. A. R. (2016b). A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study. Computers & Industrial Engineering, 96, 140-148.
Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: A review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073-1118.
Kumar, D., Rahman, Z., & Chan, F. T. (2017). A fuzzy AHP and fuzzy multi-objective linear programming model for order allocation in a sustainable supply chain: A case study. International Journal of Computer Integrated Manufacturing, 30(6), 535-551.
Kuo, R., Wang, Y., & Tien, F. (2010). Integration of artificial neural network and MADA methods for green supplier selection. Journal of Cleaner Production, 18(12), 1161-1170.
Kwon, H.-B. (2017). Exploring the predictive potential of artificial neural networks in conjunction with DEA in railroad performance modeling. International Journal of Production Economics, 183, 159-170.
Lee, M.-C., & To, C. (2010). Comparison of support vector machine and back propagation neural network in evaluating the enterprise financial distress. International Journal of Artificial Intelligence & Applications (IJAIA), 1(3), 1007-5133.
Liao, C.-N., & Kao, H.-P. (2011). An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management. Expert Systems with Applications, 38(9), 10803-10811.
Lima, F. R., Osiro, L., & Carpinetti, L. C. R. (2013). A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules. Applied Soft Computing, 13(10), 4133-4147.
Liu, Q., & Lim, S. H. (2017). Toxic air pollution and container port efficiency in the USA. Maritime Economics & Logistics, 19(1), 94-105.
Liu, T., Deng, Y., & Chan, F. (2017). Evidential supplier selection based on DEMATEL and game theory. International Journal of Fuzzy Systems, 1-13.
Luthra, S., Govindan, K., Kannan, D., Mangla, S. K., & Garg, C. P. (2017). An integrated framework for sustainable supplier selection and evaluation in supply chains. Journal of Cleaner Production, 140, 1686-1698.
Malviya, R. K., & Kant, R. (2015). Green supply chain management (GSCM): A structured literature review and research implications. Benchmarking: An International Journal, 22(7), 1360-1394.
Misiunas, N., Oztekin, A., Chen, Y., & Chandra, K. (2016). DEANN: A healthcare analytic methodology of data envelopment analysis and artificial neural networks for the prediction of organ recipient functional status. Omega, 58, 46-54.
Modak, N. M., Panda, S., & Sana, S. S. (2016a). Pricing policy and coordination for a two-layer supply chain of duopolistic retailers and socially responsible manufacturer. International Journal of Logistics Research and Applications, 19(6), 487-508.
Modak, N. M., Panda, S., & Sana, S. S. (2016b). Two-echelon supply chain coordination among manufacturer and duopolies retailers with recycling facility. The International Journal of Advanced Manufacturing Technology, 87(5-8), 1531-1546.
Modhej, D., Sanei, M., Shoja, N., & Hosseinzadeh Lotfi, F. (2017). Integrating inverse data envelopment analysis and neural network to preserve relative efficiency values. Journal of Intelligent & Fuzzy Systems(Preprint), 1-12.
Mohammady Garfamy, R. (2006). A data envelopment analysis approach based on total cost of ownership for supplier selection. Journal of Enterprise Information Management, 19(6), 662-678.
Mokhtari, M., Javanshir, H., Kamali, D., Tashakori, L., & Maadanchi, F. (2013). Supplier selection in texture industry by using fuzzy MIDM. Research Journal of Applied Sciences, Engineering and Technology, 6(3), 400-411.
Montanari, R., Bottani, E., Shekarian, E., & Kazemi, N. (2017). A model for the analysis of procurement strategies in the economic order interval environment. Mathematics and Computers in Simulation, 134, 79-98.
Mousavi-Nasab, S. H., & Sotoudeh-Anvari, A. (2017). A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Materials & Design, 121, 237-253.
Mousavi, S. M., Mostafavi, E. S., & Hosseinpour, F. (2014). Gene expression programming as a basis for new generation of electricity demand prediction models. Computers & Industrial Engineering, 74, 120-128.
Mukherjee, K. (2016). Supplier selection criteria and methods: past, present and future. International Journal of Operational Research, 27(1-2), 356-373.
Nurwaha, D., & Wang, X. (2011). Prediction of rotor spun yarn strength using support vector machines method. Fibers and Polymers, 12(4), 546-549.
Önüt, S., Kara, S. S., & Işik, E. (2009). Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company. Expert Systems with Applications, 36(2), 3887-3895.
Opricovic, S. (2016). A comparative analysis of the DEA-CCR model and the VIKOR method. Yugoslav Journal of Operations Research, 18(2).
Oum, T. H., Pathomsiri, S., & Yoshida, Y. (2013). Limitations of DEA-based approach and alternative methods in the measurement and comparison of social efficiency across firms in different transport modes: An empirical study in Japan. Transportation Research Part E: Logistics and Transportation Review, 57, 16-26.
Ozcan, Y. A. (2008). Health care benchmarking and performance evaluation: an assessment using Data Envelopment Analysis (DEA). Berlin: Springer.
Pagell, M., & Wu, Z. (2017). Business implications of sustainability practices in supply chains Sustainable Supply Chains. Springer, 339-353.
Pant, Y., Xiao, Z., Wang, X., & Yang, D. (2017). A multiple support vector machine approach to stock index forecasting with mixed frequency sampling. Knowledge-Based Systems, 122, 90-102.
Panda, S., Modak, N. M., & Cárdenas-Barrón, L. E. (2017). Coordinating a socially responsible closed-loop supply chain with product recycling. International Journal of Production Economics, 188, 11-21.
Paradi, J. C., Sherman, H. D., & Tam, F. K. (2018). Bank branch productivity applications: Strategic branch management issues addressed with DEA data envelopment analysis in the financial services industry. Springer, 129-143.
PrasannaVenkatesan, S., & Goh, M. (2016). Multi-objective supplier selection and order allocation under disruption risk. Transportation Research Part E: Logistics and Transportation Review, 95, 124-142.
Raut, R. D., Kamble, S. S., Kharat, M. G., Joshi, H., Singhal, C., & Kamble, S. J. (2017). A hybrid approach using data envelopment analysis and artificial neural network for optimising 3PL supplier selection. International Journal of Logistics Systems and Management, 26(2), 203-223.
Rejani, Y., & Selvi, S. T. (2009). Early detection of breast cancer using SVM classifier technique. arXiv preprint arXiv, 0912-2314.
Saberi, M., Rostamia, M. R., Hamidianb, M., & Aghamic, N. (2016). Forecasting the profitability in the firms listed in Tehran Stock Exchange using data envelopment analysis and artificial neural network.
Santin, D. (2008). On the approximation of production functions: A comparison of artificial neural networks frontiers and efficiency techniques. Applied Economics Letters, 15(8), 597-600.
Sarkar, S., & Sarkar, S. (2017). A modified multiplier model of BCC DEA to determine cost-based efficiency. Benchmarking: An International Journal, 24(6), 1508-1522.
Sgurev, V., Yager, R. R., Kacprzyk, J., & Atanassov, K. T. (2017). Recent contributions in intelligent systems. Springer.
Shekarian, E., Jaber, M. Y., Kazemi, N., & Ehsani, E. (2014). A fuzzified version of the economic production quantity (EPQ) model with backorders and rework for a single-stage system. European Journal of Industrial Engineering, 8(3), 291-324.
Shekarian, E., Kazemi, N., Rashid, S. H. A., & Olugu, E. U. (2017). Fuzzy inventory models: A comprehensive review. Applied Soft Computing.
Shirazi, A. Z., & Mohammadi, Z. (2017). A hybrid intelligent model combining ANN and imperialist competitive algorithm for prediction of corrosion rate in 3C steel under seawater environment. Neural Computing and Applications, 28(11), 3455-3464.
Tavana, M., Fallahpour, A., Di Caprio, D., & Santos-Arteaga, F. J. (2016a). A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Systems with Applications, 61, 129-144.
Tavana, M., Li, Z., Mobin, M., Komaki, M., & Teymourian, E. (2016b). Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS. Expert Systems with Applications, 50, 17-39.
Vahdani, B., Iranmanesh, S., Mousavi, S. M., & Abdollahzade, M. (2012). A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. Applied Mathematical Modelling, 36(10), 4714-4727.
Vahdani, B., Razavi, F., & Mousavi, S. M. (2016). A high performing meta-heuristic for training support vector regression in performance forecasting of supply chain. Neural Computing and Applications, 27(8), 2441-2451.
Verma, M., & Puri, J. G. (2017). DEA-MCDM approach for ranking decision making units using OWA aggregation operators.
Vlahogianni, E. I., Kepaptsoglou, K., & Karlaftis, M. G. (2016). Modelling the performance of the Athens Bus Network using data envelopment analysis and neural network regression. Journal of Transport Economics and Policy (JTEP), 50(4), 369-383.
Wan, X.-l., Zhang, Z., Rong, X.-x., & Meng, Q.-c. (2016). Exploring an interactive value-adding data-driven model of consumer electronics supply chain based on least squares support vector machine. Scientific Programming, 2016, 4.
Wetzstein, A., Hartmann, E., Benton Jr, W., & Hohenstein, N.-O. (2016). A systematic assessment of supplier selection literature–state-of-the-art and future scope. International Journal of Production Economics, 182, 304-323.
Wu, D. (2009). Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert Systems with Applications, 36(5), 9105-9112.
Xu, Y., Zhang, X., & Zhang, H. (2016). Research on the e-commerce platform performance and green supply chain based on data mining and SVM. International Journal of Database Theory and Application, 9(12), 141-150.
Yayla, A. Y., Yildiz, A., & Ozbek, A. (2012). Fuzzy TOPSIS method in supplier selection and application in the garment industry. Fibres & Textiles in Eastern Europe.
Yoon, J., Talluri, S., Yildiz, H., & Ho, W. (2017). Models for supplier selection and risk mitigation: a holistic approach. International Journal of Production Research, 1-26.
Yousefi, A., & Hadi-Vencheh, A. (2016). Selecting Six Sigma projects: MCDM or DEA? Journal of Modelling in Management, 11(1), 309-325.
Yu, C., Wong, T., & Li, Z. (2017). A hybrid multi-agent negotiation protocol supporting supplier selection for multiple products with synergy effect. International Journal of Production Research, 55(1), 18-37.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zhou, J., & Yao, X. (2017). A hybrid artificial bee colony algorithm for optimal selection of QoS-based cloud manufacturing service composition. The International Journal of Advanced Manufacturing Technology, 88(9-12), 3371-3387.
Zimmer, K., Fröhling, M., & Schultmann, F. (2016). Sustainable supplier management–a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research, 54(5), 1412-1442.
Zuo, K., & Guan, J. (2017). Measuring the R&D efficiency of regions by a parallel DEA game model. Scientometrics, 1-20.