Afruzi, E., Najafi, A. A., Roghanian, E., & Mazinani, M. (2014). A Multi-Objective Imperialist Competitive Algorithm for solving discrete time, cost and quality trade-off problems with mode-identity and resource-constrained situations. Computers & Operations Research, 50, 80-96.
Bampis, E., Dürr, C., Kacem, F., & Milis, I. (2012). Speed-scaling with power down scheduling for agreeable deadlines. Sustainable Computing: Informatics and Systems, 2(4), 184-189.
Bashiri, M., Badri, H., & Talebi, J. (2012). A new approach to tactical and strategic planning in production–distribution networks. Applied Mathematical Modelling, 36, 1703-1717.
Blazewicz, J., Lenstra, J. K., & Kan, A. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5, 11-24.
Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations research, 85, 172-183.
Che, A., Zhang, S., & Wu, X. (2017). Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. Journal of Cleaner Production, 156, 688-697.
Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm.
Robotics and Computer-Integrated Manufacturing,
29(5), 418-429.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182-197.
Ding, J. Y., Song, S. J., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3), 758-771.
Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J.W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234-240.
Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2016). Scheduling on a single machine under time-of-use electricity tariffs. Annals of Operations Research, 238(1-2), 199-227.
Fang, C., & Wang, L. (2012). An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Computers & Operations Research, 39 (5), 890-901.
Gao, J., Chen, R., & Deng, W. (2013). An efficient tabu search algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research, 51, 641-651.
Huang, L., Wang, G. C., Bai, T., & Wang, Z. (2017). An improved fruit fly optimization algorithm for solving traveling salesman problem. Frontiers of Information Technology & Electronic Engineering, 18(10), 1525-1533.
Kadri, R. L., & Boctor, F. F. (2018). An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case.
European Journal of Operational Research,
265(2), 454-462.
Kolisch, R., & Sprecher, A. (1996). PSPLIB - A project scheduling problem library. European Journal of Operational Research, 96(1), 205-216.
Liu, G. S., Zhou, Y., & Yang, H. D. (2017). Minimizing energy consumption and tardiness penalty for fuzzy flow shop scheduling with state-dependent setup time. Journal of Cleaner Production, 147, 470-484.
Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96.
Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238.
Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost.
International Journal of Production Economics,
146(2), 423-439.
Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption.
European Journal of Operational Research,
248(3), 772-788.
Mehdizadeh, E., Niaki, S.T.A, Hemati, M. (2018). A bi-objective aggregate production planning problem with learning effect and machine deterioration: Modeling and solution. Computers & Operations research, 91, 21-36.
Merkert, L., Harjunkoski, I., Isaksson, A., Saynevirta, S., Saarela, A., & Sand, G. (2015). Scheduling and energy – Industrial challenges and opportunities. Computers & Chemical Engineering, 72, 183-198.
Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352.
Mori, M., Fujishima, M., Inamasu, Y., & Oda, Y. (2011). A study on energy efficiency improvement for machine tools. CIRP Annals – Manufacturing Technology, 60(1), 145-148.
Mouzon, G., & Yildirim, M. B. (2008). A framework to minimize total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105-116.
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178, 514–529.
Pargar, F., Zandieh, M., Kauppila, O., & Kujala, J. (2018). The effective of worker learning on scheduling jobs in a hybrid flow shop: A bi-objective approach. Journal of Systems Science and Systems Engineering, 27(3), 265-291.
Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing, 13, 1728-1740.
Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithms optimization (unpublished master's thesis). Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.
Shrouf, F., Ordieres-Mere, J., Garcia-Sanchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197-207.
Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization.
Computers in Industry,
81, 82-95.
Wang, S., Liu, M., Chu, F., & Chu, C. (2016). Bi-objective optimization of a single machine batch scheduling problem with energy cost consideration. Journal of Cleaner Production, 137, 1205-1215.
Wang, L., & Zheng, X. L. (2018). A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem. Swarm and Evolutionary Computation, 38, 54-63.
Yan, J., Li, L., Zhao, F., Zhang, F., Zhao, Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543-1552.
Zareei, M., & Hassan-Pour, H. A. (2015). A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project. Iranian Journal of Management Studies, 8(4), 653-685.
Zhai, Y., Biel, K., Zhao, F., & Sutherland, J. W. (2017). Dynamic scheduling of a flow shop with on-site wind generation for energy cost reduction under real time electricity pricing. CIRP Annals, 66(1), 41-44.
Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375.
Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multi objective evolutionary algorithms: Empirical results. Evolutionary Computation Journal, 8, 125–148.
Zitzler, E., & Thiele, L. (1998). Multi-objective optimization using evolutionary algorithms—a comparative case study. International Conference on Parallel Problem Solving from Nature. Springer, Berlin, Heidelberg, pp. 292–301, DOI: https://doi.org/10.1007/BFb0056872.