Abo-Sinna, M., Abo-Elnaga, Y. Y., and Mousa, A. (2014). An interactive dynamic approach based on hybrid swarm optimization for solving multiobjective programming problem with fuzzy parameters. Applied Mathematical Modelling, 38(7-8), 2000-2014.
Alber, M., and Reemtsen, R. (2007). Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method. Optimisation Methods and Software, 22(3), 391-411.
Audet, C., Savard, G., and Zghal, W. (2008). Multiobjective optimization through a series of single-objective formulations. SIAM Journal on Optimization, 19(1), 188-210.
Brahme, A. (1984). Dosimetric precision requirements in radiation therapy. Acta Radiologica: Oncology, 23(5), 379-391.
Cotrutz, C., Lahanas, M., Kappas, C., and Baltas, D. (2001). A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy. Physics in Medicine and Biology, 46(8), 2161.
Craft, D., Halabi, T., Shih, H. A., and Bortfeld, T. (2007). An approach for practical multiobjective IMRT treatment planning. International journal of radiation oncology* Biology* Physics, 69(5), 1600-1607.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley and Sons.
Ehrgott, M., and Burjony, M. (2001). Radiation therapy planning by multicriteria optimization. In Proceedings of the 36th Annual Conference of the Operational Research Society of New Zealand (pp. 244-253).
Eichfelder, G. (2008). Adaptive scalarization methods in multiobjective optimization (Vol. 436). Berlin: Springer.
Eichfelder, G. (2009). Scalarizations for adaptively solving multi-objective optimization problems. Computational Optimization and Applications, 44(2), 249.
Eichfelder, G. (2014). Vector optimization in medical engineering Mathematics Without Boundaries (pp. 181-215). Springer, New York, NY.
Kasimbeyli, R., Ozturk, Z. K., Kasimbeyli, N., Yalcin, G. D., and Erdem, B. I. (2017). Comparison of Some Scalarization Methods in Multiobjective Optimization. Bulletin of the Malaysian Mathematical Sciences Society, 1-31.
Küfer, K.-H., Scherrer, A., Monz, M., Alonso, F., Trinkaus, H., Bortfeld, T., and Thieke, C. (2003). Intensity-modulated radiotherapy–a large scale multi-criteria programming problem. OR spectrum, 25(2), 223-249.
Lopeza, R. H., Rittob, T., Sampaioc, R., and de Cursid, J. E. S. (2013). A new multiobjective optimization algorithm for nonconvex pareto fronts and objective functions. Asociación Argentina de Mecánica Computacional, 669-679.
Meng, H.-y., Zhang, X.-h., and Liu, S.-y. (2005). In International Conference on Natural Computation (pp. 1044-1048). Springer, Berlin, Heidelberg.
Messac, A., Ismail-Yahaya, A., and Mattson, C. A. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86-98.
Messac, A., and Mattson, C. A. (2004). Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA journal, 42(10), 2101-2111.
Niemierko, A. (1997). Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Medical physics, 24(1), 103-110.
Pardalos, P. M., Žilinskas, A., and Žilinskas, J. (2017). Non-convex multi-objective optimization. Springer International Publishing.
Pintér, J. D., Linder, D., and Chin, P. (2006). Global Optimization Toolbox for Maple: An introduction with illustrative applications. Optimisation Methods and Software, 21(4), 565-582.
Shukla, P. K. (2007). On the normal boundary intersection method for generation of efficient front. In International Conference on Computational Science (pp. 310-317). Springer, Berlin, Heidelberg.
Siddiqui, S., Azarm, S., and Gabriel, S. (2011). A modified Benders decomposition method for efficient robust optimization under interval uncertainty. Structural and Multidisciplinary Optimization, 44(2), 259-275.
Uilhoorn, F. E. (2017). Comparison of Bayesian estimation methods for modeling flow transients in gas pipelines. Journal of Natural Gas Science and Engineering, 38:159– 170.
Valipour, E., Yaghoobi, M., and Mashinchi, M. (2014). An iterative approach to solve multiobjective linear fractional programming problems. Applied Mathematical Modelling, 38(1), 38-49.
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., and Tiwari, S. (2008). Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms.