A Second-Order Hierarchical Clustering of Cryptocurrencies

Document Type : Research Paper

Author

Department of Accounting and Finance, Faculty of Humanities and Social Sciences, Yazd University, Yazd, Iran

Abstract

The clustering of cryptocurrencies as an emerging field in investment management is the main topic of this research. Applying the information-based distance matrices, we clustered the 30 most valuable cryptocurrencies. Then, we identified the most influential clustering by the concept of Minimum Spanning Tree (MST) and the centrality measures of graph theory. A second-order clustering, which is defined as the clustering of hierarchical clusterings, was applied to cluster 56 dendrograms. Using the most influential clustering, we identified the main clusters of cryptocurrencies and sub-clusters. The results showed that the clustering composition of cryptocurrencies changed at the period I (before COVID-19) and II (pandemic time).

Keywords

Main Subjects


Aggarwal, D. (2019). Do bitcoins follow a random walk model? Research in Economics, 73(1), 15–22. https://doi.org/10.1016/j.rie.2019.01.002
Aghabozorgi, S., Seyed Shirkhorshidi, A., & Ying Wah, T. (2015). Time-series clustering – A decade review. Information Systems, 53, 16–38. https://doi.org/10.1016/j.is.2015.04.007
Albatineh, A. N., Niewiadomska-Bugaj, M., & Mihalko, D. (2006). On similarity indices and correction for chance agreement. Journal of Classification, 23(2), 301–313. https://doi.org/10.1007/s00357-006-0017-z
Amigó, J., Balogh, S., & Hernández, S. (2018). A brief review of generalized entropies. Entropy, 20(11),  -834. https://doi.org/10.3390/e20110813
Andrada-Félix, J., Fernandez-Perez, A., & Sosvilla-Rivero, S. (2020). Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities. Journal of International Financial Markets, Institutions and Money, 67, 101219. https://doi.org/10.1016/j.intfin.2020.101219
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., & Veyrat-Charvillon, N. (2011). Mutual information analysis: A comprehensive study. Journal of Cryptology, 24(2), 269–291. https://doi.org/10.1007/s00145-010-9084-8
Black, F., & Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts Journal, 48(5), 28–43. https://doi.org/10.2469/faj.v48.n5.28
Boako, G., Tiwari, A. K., & Roubaud, D. (2019). Vine copula-based dependence and portfolio value-at-risk analysis of the cryptocurrency market. International Economics, 158, 77–90. https://doi.org/10.1016/j.inteco.2019.03.002
Bonanno, G., Caldarelli, G., Lillo, F., Micciché, S., Vandewalle, N., & Mantegna, R. N. (2004). Networks of equities in financial markets. The European Physical Journal B - Condensed Matter and Complex Systems, 38(2), 363–371. https://doi.org/10.1140/epjb/e2004-00129-6
Bossomaier, T., Barnett, L., Harré, M., & Lizier, J. T. (2016). Information theory. In T. Bossomaier, L. Barnett, M. Harré, & J. T. Lizier (Eds.), An introduction to transfer entropy (pp. 33–63). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-43222-9_3
Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2019). Trading volume and the predictability of return and volatility in the cryptocurrency market. Finance Research Letters, 29, 340–346. https://doi.org/10.1016/j.frl.2018.08.015
Bouri, E., Lucey, B., & Roubaud, D. (2020). Cryptocurrencies and the downside risk in equity investments. Finance Research Letters, 33, 101211. https://doi.org/10.1016/j.frl.2019.06.009
Brauneis, A., & Mestel, R. (2019). Cryptocurrency-portfolios in a mean-variance framework. Finance Research Letters, 28, 259–264. https://doi.org/10.1016/j.frl.2018.05.008
Cai, R., Zhang, Z., Tung, A. K., Dai, C., & Hao, Z. (2014). A general framework of hierarchical clustering and its applications. Information Sciences, 272, 29–48. https://doi.org/10.1016/j.ins.2014.02.062
Chaudhari, H., & Crane, M. (2020). Cross-correlation dynamics and community structures of cryptocurrencies. Journal of Computational Science, 44, 101130. https://doi.org/10.1016/j.jocs.2020.101130
Coletti, P. (2016). Comparing minimum spanning trees of the Italian stock market using returns and volumes. Physica a: Statistical Mechanics and Its Applications, 463, 246–261. https://doi.org/10.1016/j.physa.2016.07.029
Corbet, S., Hou, Y., Hu, Y., Larkin, C., Lucey, B., & Oxley, L. (2021). Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic. Finance Research Letters, 45, 102137. https://doi.org/10.1016/j.frl.2021.102137
Corbet, S., Larkin, C., & Lucey, B. (2020). The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies. Finance Research Letters, 35, 101554. https://doi.org/10.1016/j.frl.2020.101554
Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley and Chichester. http://www.loc.gov/catdir/enhancements/fy0624/2005047799-d.html
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems , 1695, 1-9.
Deza, M., & Deza, E. (Eds.). (2013). Encyclopedia of distances. Springer.
Dubitzky, W., Wolkenhauer, O., Cho, K.-H., & Yokota, H. (2013). Encyclopedia of Systems Biology. Springer New York. https://doi.org/10.1007/978-1-4419-9863-7
Gates, A. J., & Ahn, Y.-Y. (2019). CluSim: a python package for calculating clustering similarity. Journal of Open Source Software, 4(35), 1264. https://doi.org/10.21105/joss.01264
Galili, T. (2015). Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. 31:3718–3720. https://doi.org/10.1093/bioinformatics/btv428
Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The dtw package. Journal of Statistical Software, 31(7). https://doi.org/10.18637/jss.v031.i07
Golbeck, J. (2013). Network structure and measures. In J. Golbeck (Ed.), Analyzing the social web (pp. 25–44). Morgan Kaufmann/Elsevier. https://doi.org/10.1016/B978-0-12-405531-5.00003-1
Guo, X., Zhang, H., & Tian, T. (2018). Development of stock correlation networks using mutual information and financial big data. PLOS ONE, 13(4), e0195941. https://doi.org/10.1371/journal.pone.0195941
Hu, B., Bi, L., & Dai, S. (2017). Information distances versus entropy metric. Entropy, 19(6),  -269. https://doi.org/10.3390/e19060260
Jang, W., Lee, J., & Chang, W. (2011). Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree. Physica a: Statistical Mechanics and Its Applications, 390(4), 707–718. https://doi.org/10.1016/j.physa.2010.10.028
Jo, S. K., Kim, M. J., Lim, K., & Kim, S. Y. (2018). Correlation analysis of the Korean stock market: Revisited to consider the influence of foreign exchange rate. Physica a: Statistical Mechanics and Its Applications, 491, 852–868. https://doi.org/10.1016/j.physa.2017.09.071
Khedmati, M., & Azin, P. (2020). An online portfolio selection algorithm using clustering approaches and considering transaction costs. Expert Systems with Applications, 159, 113546. https://doi.org/10.1016/j.eswa.2020.113546
Kraskov, A., & Grassberger, P. (2009). MIC: Mutual information based hierarchical clustering. In F. Emmert-Streib & M. Dehmer (Eds.), Information theory and statistical learning (pp. 101–123). Springer. https://doi.org/10.1007/978-0-387-84816-7_5
Kristjanpoller, W., Bouri, E., & Takaishi, T. (2020). Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis. Physica a: Statistical Mechanics and Its Applications, 545, 123711. https://doi.org/10.1016/j.physa.2019.123711
Lahmiri, S., & Bekiros, S. (2020). The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets. Chaos, Solitons & Fractals, 138, 109936. https://doi.org/10.1016/j.chaos.2020.109936
Lahmiri, S., & Bekiros, S. (2021). The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets. Chaos, Solitons & Fractals, 151, 111221. https://doi.org/10.1016/j.chaos.2021.111221
Li, M. (2006). Information distance and its applications. In O. H. Ibarra & H.-C. Yen (Eds.), Lecture Notes in Computer Science, Implementation and application of automata (pp. 1–9). Springer.
Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. B. (2004). The similarity metric. IEEE Transactions on Information Theory, 50(12), 3250–3264. https://doi.org/10.1109/TIT.2004.838101
Liu, W. (2019). Portfolio diversification across cryptocurrencies. Finance Research Letters, 29, 200–205. https://doi.org/10.1016/j.frl.2018.07.010
Liu, W, Semeyutin, A., Lau, C. K. M., & Gozgor, G. (2020). Forecasting value-at-risk of cryptocurrencies with risk metrics type models. Research in International Business and Finance, 54, 101259. https://doi.org/10.1016/j.ribaf.2020.101259
Mallqui, D. C. A., & Fernandes, R. A. S. (2019). Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques. Applied Soft Computing, 75, 596–606. https://doi.org/10.1016/j.asoc.2018.11.038
Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B - Condensed Matter and Complex Systems, 11(1), 193–197. https://doi.org/10.1007/s100510050929
Meila, M. (2003). Comparing clusterings by the variation of information. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), Learning theory and kernel machines (pp. 173–187). Springer Berlin Heidelberg.
Merediz-Sola, I., & Bariviera, A. F. (2019). A bibliometric analysis of bitcoin scientific production. Research in International Business and Finance, 50, 294–305. https://doi.org/10.1016/j.ribaf.2019.06.008
Meyer, P. E. (2014). Infotheo: Information-theoretic measures. https://CRAN.R-project.org/package=infotheo
Mnif, E., Jarboui, A., & Mouakhar, K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis. Finance Research Letters, 36, 101647. https://doi.org/10.1016/j.frl.2020.101647
Montasser, G. E., Charfeddine, L., & Benhamed, A. (2021). COVID-19, cryptocurrencies bubbles and digital market efficiency: Sensitivity and similarity analysis. Finance Research Letters, 46, 102362. https://doi.org/10.1016/j.frl.2021.102362
Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy. Energy Economics, 87, 104703. https://doi.org/10.1016/j.eneco.2020.104703
Ortmann, R., Pelster, M., & Wengerek, S. T. (2020). COVID-19 and investor behavior. Finance Research  , 37, 101717. https://doi.org/10.1016/j.frl.2020.101717
Platanakis, E., & Urquhart, A. (2019). Portfolio management with cryptocurrencies: The role of estimation risk. Economics Letters, 177, 76–80. https://doi.org/10.1016/j.econlet.2019.01.019
Principe, J. C. (2010). Information theoretic learning. Springer New York. https://doi.org/10.1007/978-1-4419-1570-2
Rasmussen, M. (Ed.). (2014). Quantitative portfolio optimisation, asset allocation and risk management. Palgrave Macmillan.
Rehman, M. U., & Vinh Vo, X. (2020). Cryptocurrencies and precious metals: A closer look from diversification perspective. Resources Policy, 66, 101652. https://doi.org/10.1016/j.resourpol.2020.101652
Rubbaniy, G., Polyzos, S., Rizvi, S. K. A., & Tessema, A. (2021). COVID-19, lockdowns and herding towards a cryptocurrency market-specific implied volatility index. Economics Letters, 207, 110017. https://doi.org/10.1016/j.econlet.2021.110017
Ryan, J. A., & Ulrich. J. M. (2020). Quantmod: Quantitative financial modelling framework. https://CRAN.R-project.org/package=quantmod
Scornavacca, C., Zickmann, F., & Huson, D. H. (2011). Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics (Oxford, England), 27(13), i248-i256. https://doi.org/10.1093/bioinformatics/btr210
Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. TAXON, 11(2), 33–40. https://doi.org/10.2307/1217208
Song, J. Y., Chang, W., & Song, J. W. (2019). Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering. Physica a: Statistical Mechanics and Its Applications, 527, 121339. https://doi.org/10.1016/j.physa.2019.121339
Song, L., Langfelder, P., & Horvath, S. (2012). Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinformatics, 13(1), 1–21. https://doi.org/10.1186/1471-2105-13-328
Steuer, R., Daub, C. O., Selbig, J., & Kurths, J. (2005). Measuring distances between variables by mutual information. In D. Baier & K.-D. Wernecke (Eds.), Studies in classification, data analysis, and knowledge organization, innovations in classification, data science, and information systems (pp. 81–90). Springer Berlin Heidelberg and Springer e-books.
Stosic, D., Stosic, D., Ludermir, T. B., & Stosic, T. (2018). Collective behavior of cryptocurrency price changes. Physica a: Statistical Mechanics and Its Applications, 507, 499–509. https://doi.org/10.1016/j.physa.2018.05.050
Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of stock market networks: The case of Brazil. Physica a: Statistical Mechanics and Its Applications, 389(16), 3240–3249. https://doi.org/10.1016/j.physa.2010.04.002
Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: How the technology behind bitcoin is changing money, business, and the world. Portfolio / Penguin.
Tiwari, A. K., Raheem, I. D., & Kang, S. H. (2019). Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model. Physica a: Statistical Mechanics and Its Applications, 535, 122295. https://doi.org/10.1016/j.physa.2019.122295
Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems. Proceedings of the National Academy of Sciences, 102(30), 10421–10426. https://doi.org/10.1073/pnas.0500298102
Tumminello, T., Di Matteo, T., Aste, T., & Mantegna R. N. (2007). Correlation based networks of equity returns sampled at different time horizons. The European Physical Journal B, 55(2), 209–217. https://doi.org/10.1140/epjb/e2006-00414-4
Umar, Z., & Gubareva, M. (2020). A time-frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets. Journal of Behavioral and Experimental Finance, 28, 100404. https://doi.org/10.1016/j.jbef.2020.100404
Van der Hoef, H., & Warrens, M. J. (2019). Understanding information theoretic measures for comparing clusterings. Behaviormetrika, 46(2), 353–370. https://doi.org/10.1007/s41237-018-0075-7
Von Foerster, H. (2002). Cybernetics of cybernetics. In H. von Foerster (Ed.), Understanding understanding (pp. 283–286). Springer. https://doi.org/10.1007/0-387-21722-3_13
Warren Liao, T. (2005). Clustering of time series data – A survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025
Warrens, M. J. (2019). Similarity measures for 2 × 2 tables. Journal of Intelligent & Fuzzy Systems, 36(4), 3005–3018. https://doi.org/10.3233/JIFS-172291
Xu, Q., Zhang, Y., & Zhang, Z. (2021). Tail-risk spillovers in cryptocurrency markets. Finance Research Letters, 38, 101453. https://doi.org/10.1016/j.frl.2020.101453
Yarovaya, L., Matkovskyy, R., & Jalan, A. (2021). The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets. Journal of International Financial Markets, Institutions and Money, 75,101321. https://doi.org/10.1016/j.intfin.2021.101321
Zhang, W., Li, Y., Xiong, X., & Wang, P. (2021). Downside risk and the cross-section of cryptocurrency returns. Journal of Banking & Finance, 133, 106246. https://doi.org/10.1016/j.jbankfin.2021.106246
Zięba, D., Kokoszczyński, R., & Śledziewska, K. (2019). Shock transmission in the cryptocurrency market. Is Bitcoin the most influential? International Review of Financial Analysis, 64, 102–125. https://doi.org/10.1016/j.irfa.2019.04.009