Albatineh, A. N., Niewiadomska-Bugaj, M., & Mihalko, D. (2006). On similarity indices and correction for chance agreement.
Journal of Classification,
23(2), 301–313.
https://doi.org/10.1007/s00357-006-0017-z
Andrada-Félix, J., Fernandez-Perez, A., & Sosvilla-Rivero, S. (2020). Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities.
Journal of International Financial Markets, Institutions and Money,
67, 101219.
https://doi.org/10.1016/j.intfin.2020.101219
Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., & Veyrat-Charvillon, N. (2011). Mutual information analysis: A comprehensive study.
Journal of Cryptology,
24(2), 269–291.
https://doi.org/10.1007/s00145-010-9084-8
Boako, G., Tiwari, A. K., & Roubaud, D. (2019). Vine copula-based dependence and portfolio value-at-risk analysis of the cryptocurrency market.
International Economics,
158, 77–90.
https://doi.org/10.1016/j.inteco.2019.03.002
Bonanno, G., Caldarelli, G., Lillo, F., Micciché, S., Vandewalle, N., & Mantegna, R. N. (2004). Networks of equities in financial markets.
The European Physical Journal B - Condensed Matter and Complex Systems,
38(2), 363–371.
https://doi.org/10.1140/epjb/e2004-00129-6
Bossomaier, T., Barnett, L., Harré, M., & Lizier, J. T. (2016). Information theory. In T. Bossomaier, L. Barnett, M. Harré, & J. T. Lizier (Eds.),
An introduction to transfer entropy (pp. 33–63). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-319-43222-9_3
Bouri, E., Lau, C. K. M., Lucey, B., & Roubaud, D. (2019). Trading volume and the predictability of return and volatility in the cryptocurrency market.
Finance Research Letters,
29, 340–346.
https://doi.org/10.1016/j.frl.2018.08.015
Cai, R., Zhang, Z., Tung, A. K., Dai, C., & Hao, Z. (2014). A general framework of hierarchical clustering and its applications.
Information Sciences,
272, 29–48.
https://doi.org/10.1016/j.ins.2014.02.062
Coletti, P. (2016). Comparing minimum spanning trees of the Italian stock market using returns and volumes.
Physica a: Statistical Mechanics and Its Applications,
463, 246–261.
https://doi.org/10.1016/j.physa.2016.07.029
Corbet, S., Hou, Y., Hu, Y., Larkin, C., Lucey, B., & Oxley, L. (2021). Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic.
Finance Research Letters, 45, 102137.
https://doi.org/10.1016/j.frl.2021.102137
Corbet, S., Larkin, C., & Lucey, B. (2020). The contagion effects of the COVID-19 pandemic: Evidence from gold and cryptocurrencies.
Finance Research Letters,
35, 101554.
https://doi.org/10.1016/j.frl.2020.101554
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems , 1695, 1-9.
Deza, M., & Deza, E. (Eds.). (2013). Encyclopedia of distances. Springer.
Gates, A. J., & Ahn, Y.-Y. (2019). CluSim: a python package for calculating clustering similarity. Journal of Open Source Software, 4(35), 1264. https://doi.org/10.21105/joss.01264
Galili, T. (2015). Dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. 31:3718–3720. https://doi.org/10.1093/bioinformatics/btv428
Jang, W., Lee, J., & Chang, W. (2011). Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree.
Physica a: Statistical Mechanics and Its Applications,
390(4), 707–718.
https://doi.org/10.1016/j.physa.2010.10.028
Jo, S. K., Kim, M. J., Lim, K., & Kim, S. Y. (2018). Correlation analysis of the Korean stock market: Revisited to consider the influence of foreign exchange rate.
Physica a: Statistical Mechanics and Its Applications,
491, 852–868.
https://doi.org/10.1016/j.physa.2017.09.071
Khedmati, M., & Azin, P. (2020). An online portfolio selection algorithm using clustering approaches and considering transaction costs.
Expert Systems with Applications,
159, 113546.
https://doi.org/10.1016/j.eswa.2020.113546
Kraskov, A., & Grassberger, P. (2009). MIC: Mutual information based hierarchical clustering. In F. Emmert-Streib & M. Dehmer (Eds.),
Information theory and statistical learning (pp. 101–123). Springer.
https://doi.org/10.1007/978-0-387-84816-7_5
Kristjanpoller, W., Bouri, E., & Takaishi, T. (2020). Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis.
Physica a: Statistical Mechanics and Its Applications,
545, 123711.
https://doi.org/10.1016/j.physa.2019.123711
Lahmiri, S., & Bekiros, S. (2020). The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets.
Chaos, Solitons & Fractals,
138, 109936.
https://doi.org/10.1016/j.chaos.2020.109936
Lahmiri, S., & Bekiros, S. (2021). The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets.
Chaos, Solitons & Fractals,
151, 111221.
https://doi.org/10.1016/j.chaos.2021.111221
Li, M. (2006). Information distance and its applications. In O. H. Ibarra & H.-C. Yen (Eds.), Lecture Notes in Computer Science, Implementation and application of automata (pp. 1–9). Springer.
Li, M., Chen, X., Li, X., Ma, B., & Vitanyi, P. M. B. (2004). The similarity metric. IEEE Transactions on Information Theory, 50(12), 3250–3264. https://doi.org/10.1109/TIT.2004.838101
Liu, W, Semeyutin, A., Lau, C. K. M., & Gozgor, G. (2020). Forecasting value-at-risk of cryptocurrencies with risk metrics type models.
Research in International Business and Finance,
54, 101259.
https://doi.org/10.1016/j.ribaf.2020.101259
Mallqui, D. C. A., & Fernandes, R. A. S. (2019). Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques.
Applied Soft Computing,
75, 596–606.
https://doi.org/10.1016/j.asoc.2018.11.038
Mantegna, R. N. (1999). Hierarchical structure in financial markets.
The European Physical Journal B - Condensed Matter and Complex Systems,
11(1), 193–197.
https://doi.org/10.1007/s100510050929
Meila, M. (2003). Comparing clusterings by the variation of information. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), Learning theory and kernel machines (pp. 173–187). Springer Berlin Heidelberg.
Mnif, E., Jarboui, A., & Mouakhar, K. (2020). How the cryptocurrency market has performed during COVID 19? A multifractal analysis.
Finance Research Letters,
36, 101647.
https://doi.org/10.1016/j.frl.2020.101647
Montasser, G. E., Charfeddine, L., & Benhamed, A. (2021). COVID-19, cryptocurrencies bubbles and digital market efficiency: Sensitivity and similarity analysis.
Finance Research Letters, 46, 102362.
https://doi.org/10.1016/j.frl.2021.102362
Rasmussen, M. (Ed.). (2014). Quantitative portfolio optimisation, asset allocation and risk management. Palgrave Macmillan.
Rubbaniy, G., Polyzos, S., Rizvi, S. K. A., & Tessema, A. (2021). COVID-19, lockdowns and herding towards a cryptocurrency market-specific implied volatility index.
Economics Letters,
207, 110017.
https://doi.org/10.1016/j.econlet.2021.110017
Song, J. Y., Chang, W., & Song, J. W. (2019). Cluster analysis on the structure of the cryptocurrency market via Bitcoin–Ethereum filtering.
Physica a: Statistical Mechanics and Its Applications,
527, 121339.
https://doi.org/10.1016/j.physa.2019.121339
Song, L., Langfelder, P., & Horvath, S. (2012). Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinformatics, 13(1), 1–21.
https://doi.org/10.1186/1471-2105-13-328
Steuer, R., Daub, C. O., Selbig, J., & Kurths, J. (2005). Measuring distances between variables by mutual information. In D. Baier & K.-D. Wernecke (Eds.), Studies in classification, data analysis, and knowledge organization, innovations in classification, data science, and information systems (pp. 81–90). Springer Berlin Heidelberg and Springer e-books.
Stosic, D., Stosic, D., Ludermir, T. B., & Stosic, T. (2018). Collective behavior of cryptocurrency price changes.
Physica a: Statistical Mechanics and Its Applications,
507, 499–509.
https://doi.org/10.1016/j.physa.2018.05.050
Tabak, B. M., Serra, T. R., & Cajueiro, D. O. (2010). Topological properties of stock market networks: The case of Brazil.
Physica a: Statistical Mechanics and Its Applications,
389(16), 3240–3249.
https://doi.org/10.1016/j.physa.2010.04.002
Tapscott, D., & Tapscott, A. (2016). Blockchain revolution: How the technology behind bitcoin is changing money, business, and the world. Portfolio / Penguin.
Tiwari, A. K., Raheem, I. D., & Kang, S. H. (2019). Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model.
Physica a: Statistical Mechanics and Its Applications,
535, 122295.
https://doi.org/10.1016/j.physa.2019.122295
Tumminello, M., Aste, T., Di Matteo, T., & Mantegna, R. N. (2005). A tool for filtering information in complex systems.
Proceedings of the National Academy of Sciences,
102(30), 10421–10426.
https://doi.org/10.1073/pnas.0500298102
Tumminello, T., Di Matteo, T., Aste, T., & Mantegna R. N. (2007). Correlation based networks of equity returns sampled at different time horizons.
The European Physical Journal B,
55(2), 209–217.
https://doi.org/10.1140/epjb/e2006-00414-4
Umar, Z., & Gubareva, M. (2020). A time-frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets.
Journal of Behavioral and Experimental Finance,
28, 100404.
https://doi.org/10.1016/j.jbef.2020.100404
Van der Hoef, H., & Warrens, M. J. (2019). Understanding information theoretic measures for comparing clusterings. Behaviormetrika, 46(2), 353–370. https://doi.org/10.1007/s41237-018-0075-7
Von Foerster, H. (2002). Cybernetics of cybernetics. In H. von Foerster (Ed.), Understanding understanding (pp. 283–286). Springer. https://doi.org/10.1007/0-387-21722-3_13
Yarovaya, L., Matkovskyy, R., & Jalan, A. (2021). The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets.
Journal of International Financial Markets, Institutions and Money, 75,101321.
https://doi.org/10.1016/j.intfin.2021.101321
Zięba, D., Kokoszczyński, R., & Śledziewska, K. (2019). Shock transmission in the cryptocurrency market. Is Bitcoin the most influential?
International Review of Financial Analysis,
64, 102–125.
https://doi.org/10.1016/j.irfa.2019.04.009