A Bibliometric Analysis of Research on Big Data and Its Potential to Value Creation and Capture

Document Type : Review article

Authors

1 Jheronimus Academy of Data Science (JADS), The Joint Graduate School of Tilburg University and Eindhoven University of Technology, 5211 DA, ‘s-Hertogenbosch, the Netherlands Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran

2 Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran

Abstract

The emergence of big data is a radical shift in the business context, leading to a change in value creation and capture. This phenomenon is a newborn concept in the business and management literature confirmed by the growing number of publications over recent years. This paper presents an updating comprehensive bibliometric analysis to describe and assess the scientific landscape of value creation and capture based on leveraging big data in the literature. Bibliometrix and VOSviewer were selected as software tools for descriptive and network bibliometric analysis based on the Web of Science Core Collection database from 2011 until 2020. By implementing bibliometric analysis such as analysis of citations and co-occurrence of keywords, we have recognized the most prominent and influential authors, papers, journals, countries, and four potential clusters of current trends in studies. These four trends of value creation and capture from big data studies are: 1) strengthening the basic knowledge of value creation in the big data era, 2) data-driven business model and value capturing, 3) dynamic capabilities and centrality of knowledge, and 4) digital transformation of the service industry. Finally, by identifying the existing research gaps, future research directions in each cluster are demonstrated.

Keywords

Main Subjects


Article Title [Persian]

تجزیه و تحلیل بیبلیومتریک داده های بزرگ و پتانسیل آن برای ایجاد و اخذ ارزش

Authors [Persian]

  • صبا عبدیان 1
  • معصومه حسین زاده شهری 2
  • آمنه خدیور 2
1 آکادمی علوم داده جدز، دانشکده تحصیلات تکمیلی مشترک دانشگاه تیلبورگ و دانشگاه فنی آیندهوون، دن بوش، هلند دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا، تهران، ایران
2 دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا، تهران، ایران
Abstract [Persian]

ظهور کلان‌داده یک جهش اساسی در حیطه کسب و کار است که منجر به تغییرات بنیادی در ایجاد و اخذ ارزش می شود. این پدیده، یک مفهوم جدید در ادبیات کسب و کار و مدیریت است که در طی سالهای اخیر مورد توجه تعداد زیادی از مقالات قرار گرفته است. هدف از این پژوهش ارائه تحلیل جامع بیبلیومتریک برای توصیف و ارزیابی چشم انداز علمی ایجاد و اخذ ارزش بر مبنای بهره برداری از داده های کلان در ادبیات حاضر است. در این پژوهش، نرم افزارهای VOSviewer و Bibliometrix به عنوان ابزار تحلیلی توصیفی و شبکه ای بر مبنای پایگاه داده Web of Science در طی سال های 2011 تا 2020 مورد استفاده قرار گرفته اند.  تحلیل استنادها و همزمانی کلمات کلیدی جهت شناسایی نویسندگان برجسته و تأثیرگذار، مقالات، مجلات، کشورها و چهار خوشه بالقوه از روند مطالعات فعلی صورت گرفت. این چهار خوشه عبارتند از: 1) تقویت دانش بنیادی ایجاد ارزش، 2) مدل کسب و کار مبتنی بر داده و اخذ ارزش، 3) قابلیت های پویا و محوریت دانش و  4) تحلیل تأثیر تحول دیجیتال بر صنعت خدمات. سرانجام با شناسایی شکاف های تحقیقاتی موجود، محورهای تحقیقاتی آتی در هر خوشه نشان داده شده است.

Keywords [Persian]

  • ایجاد ارزش
  • اخذ ارزش
  • مدل کسب و کار
  • کلان داده
  • تحلیل بیبلیومتریک
Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: A systematic review and agenda for future research. Electronic Markets, 26(2), 173–194. https://doi.org/10.1007/s12525-016-0219-0
Amankwah-Amoah. (2016). Emerging economies, emerging challenges: Mobilising and capturing value from big data. Technological Forecasting and Social Change,  , 167–174. https://doi.org/10.1016/j.techfore.2015.10.022
Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0 Mapping digital technologies for supply chain management-marketing integration. Business Process Management Journal, 25(2, SI), 323–346. https://doi.org/10.1108/BPMJ-04-2017-0088
Ardito, L., Scuotto, V., Del Giudice, M., & Petruzzelli, A. M. (2019). A bibliometric analysis of research on Big Data analytics for business and management. Management Decision, 57(8, SI), 1993–2009. https://doi.org/10.1108/MD-07-2018-0754
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Božič, K., & Dimovski, V. (2019). Business intelligence and analytics use, innovation ambidexterity, and firm performance: A dynamic capabilities perspective. The Journal of Strategic Information Systems, 28(4), 101578 .  https://doi.org/10.1016/j.jsis.2019.101578
Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes. International Journal of Operations & Production Management, 38(7), 1589–1614. https://doi.org/10.1108/IJOPM-05-2017-0268
Brinch, M., Gunasekaran, A., & Fosso Wamba, S. (2020). Firm-level capabilities towards big data value creation. Journal of Business Research,  .https://doi.org/10.1016/j.jbusres.2020.07.036
Brown, D. E., Famili, F., Paass, G., Smith-Miles, K., Thomas, L. C., Weber, R., ... & Maldonado, S. (2011). Future trends in business analytics and optimization. Intelligent Data Analysis, 15(6), 1001-1017.
Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS quarterly, 1165-1188.
Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4–39. https://doi.org/10.1080/07421222.2015.1138364
Chiang, R. H. L., Grover, V., Liang, T. P., & Zhang, D. (2018). Special issue: Strategic value of big data and business analytics. Journal of Management Information Systems, 35(2), 383–387. https://doi.org/10.1080/07421222.2018.1451950
Ciampi, F., Marzi, G., Demi, S., & Faraoni, M. (2020). The big data-business strategy interconnection: A grand challenge for knowledge management: A review and future perspectives. Journal of Knowledge Management, 24(5), 1157–1176. https://doi.org/10.1108/JKM-02-2020-0156
Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. https://doi.org/10.1002/asi.21525
Conboy, K., Mikalef, P., Dennehy, D., & Krogstie, J. (2020). Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda. European Journal of Operational Research, 281(3), 656–672. https://doi.org/10.1016/j.ejor.2019.06.051
Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017). Assessing business value of Big Data Analytics in European firms. Journal of Business Research,  , 379–390. https://doi.org/10.1016/j.jbusres.2016.08.011
Côrte-Real, N., Ruivo, P., & Oliveira, T. (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information and Management, 57(1), 103141.https://doi.org/10.1016/j.im.2019.01.003
Corte-Real, N., Ruivo, P., Oliveira, T., & Popovic, A. (2019). Unlocking the drivers of big data analytics value in firms. Journal of Business Research,  , 160–173. https://doi.org/10.1016/j.jbusres.2018.12.072
Culot, G., Orzes, G., Sartor, M., & Nassimbeni, G. (2020). The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0. Technological Forecasting and Social Change, 157, 120092 . https://doi.org/10.1016/j.techfore.2020.120092
Davenport, T. H. (2013). Analytics 3.0. Harvard business review, 91(12), 64-72 .
Debackere, K., Verbeek, A., Luwel, M., & Zimmermann, E. (2002). Measuring progress and evolution in science and technology - II: The multiple uses of technometric indicators. International Journal of Management Reviews, 4(3), 213–231. https://doi.org/10.1111/1468-2370.00085
Dong, J Q, & Yang, C.-H. (2020). Business value of big data analytics: A systems-theoretic approach and empirical test. Information and Management, 57(1), 103124 . https://doi.org/10.1016/j.im.2018.11.001
Dragicevic, N., Ullrich, A., Tsui, E., & Gronau, N. (2020). A conceptual model of knowledge dynamics in the industry 4.0 smart grid scenario. Knowledge Management Research and Practice, 18(2), 199–213. https://doi.org/10.1080/14778238.2019.1633893
Dzikowski, P. (2018). A bibliometric analysis of born global firms. Journal of Business Research, 85(December 2017), 281–294. https://doi.org/10.1016/j.jbusres.2017.12.054
Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2020). A multi-dimension framework for value creation through Big Data. Industrial Marketing Management, 90(November 2018), 617–632. https://doi.org/10.1016/j.indmarman.2020.03.015
Fosso Wamba, S., & Akter, S. (2019). Understanding supply chain analytics capabilities and agility for data-rich environments. International Journal of Operations and Production Management, 39(6/7/8, SI), 887–912. https://doi.org/10.1108/IJOPM-01-2019-0025
Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics,  , 234–246. https://doi.org/10.1016/j.ijpe.2014.12.031
Fosso Wamba, S., Akter, S., Trinchera, L., & De Bourmont, M. (2018). Turning information quality into firm performance in the big data economy. Management Decision, 57(8, SI), MD-04-2018-0394. https://doi.org/10.1108/MD-04-2018-0394
Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change,  , 341–351. https://doi.org/10.1016/j.techfore.2019.01.014
Furtado, L., Dutra, M., & Macedo, D. (2017). Value creation in big data scenarios: A literature survey. Journal of Industrial Integration and Management, 2(1), 1750002. https://doi.org/10.1142/s2424862217500026
Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the future, 2007(2012), 1-16 .
George, G., Lavie, D., Osinga, E. C., & Scott, B. A. (2016). From the editors: Big data and data science methods for management research. Academy of Management Journal, 59(5), 1493–1507. https://doi.org/10.5465/amj.2014.4002
Ghasemaghaei, M., & Calic, G. (2020). Assessing the impact of big data on firm innovation performance: Big data is not always better data. Journal of Business Research,  , 147–162. https://doi.org/10.1016/j.jbusres.2019.09.062
Ghasemaghaei, M., Hassanein, K. & Turel, O. (2015). Impacts of big data analytics on organizations: A resource fit perspective. Americas Conference on Information Systems.
Gnizy, I. (2019). Big data and its strategic path to value in international firms. International Marketing Review, 36(3), 318–341. https://doi.org/10.1108/IMR-09-2018-0249
Gobble, M. A. M. (2013). Big data: The next big thing in innovation. Research Technology Management, 56(1), 64–66. https://doi.org/10.5437/08956308X5601005
Grover, V., Chiang, R. H. L., Liang, T.-P., & Zhang, D. (2018). Creating strategic business value from big data analytics: A research framework. Journal of Management Information Systems, 35(2), 388–423. https://doi.org/10.1080/07421222.2018.1451951
Günther, W. A., Mehrizi, M. H. R., Huysman, M., & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. The Journal of Strategic Information Systems, 26(3), 191-209.
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research,  , 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data – A taxonomy of data-driven business models used by start-up firms. International Journal of Operations and Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-02-2014-0098
Jabbour, C. J. C., Jabbour, A. B. L. de S., Sarkis, J., & Filho, M. G. (2019). Unlocking the circular economy through new business models based on large-scale data: An integrative framework and research agenda. Technological Forecasting and Social Change,  , 546–552.   https://doi.org/10.1016/j.techfore.2017.09.010
Jayashankar, P., Johnston, W. J., Nilakanta, S., & Burres, R. (2019). Co-creation of value-in-use through big data technology- a B2B agricultural perspective. Journal of Business and Industrial Marketing, 35(3), 508–523. https://doi.org/10.1108/JBIM-12-2018-0411
Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011–5026. https://doi.org/10.1080/00207543.2016.1154209
Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations and Production Management, 37(1), 10–36. https://doi.org/10.1108/IJOPM-02-2015-0078
Khan, Z., & Vorley, T. (2017). Big data text analytics: An enabler of knowledge management. Journal of Knowledge Management, 21(1), 18–34. https://doi.org/10.1108/JKM-06-2015-0238
Krishnamoorthi, S., & Mathew, S. K. (2018). Business analytics and business value: A comparative case study. Information and Management, 55(5), 643–666. https://doi.org/10.1016/j.im.2018.01.005
Kunz, W., Aksoy, L., Bart, Y., Heinonen, K., Kabadayi, S., Ordenes, F. V., Sigala, M., Diaz, D., & Theodoulidis, B. (2017). Customer engagement in a Big Data world. Journal of Services Marketing, 31(2), 161–171. https://doi.org/10.1108/JSM-10-2016-0352
Kwon, O., Lee, N., & Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387–394. https://doi.org/10.1016/j.ijinfomgt.2014.02.002
Lamba, H. S., & Dubey, S. K. (2015). Analysis of requirements for big data adoption to maximize IT business value. 2015 4th International Conference on Reliability, Infocom Technologies and Optimization: Trends and Future Directions, ICRITO 2015, 1–6. https://doi.org/10.1109/ICRITO.2015.7359268
Lavalle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.
Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X. J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability (Switzerland), 10(1), 1–18. https://doi.org/10.3390/su10010166
Line, N. D., Dogru, T., El-Manstrly, D., Buoye, A., Malthouse, E., & Kandampully, J. (2020). Control, use and ownership of big data: A reciprocal view of customer big data value in the hospitality and tourism industry. Tourism Management,  , 104106. https://doi.org/10.1016/j.tourman.2020.104106
Loebbecke, C., & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. Journal of Strategic Information Systems, 24(3), 149–157. https://doi.org/10.1016/j.jsis.2015.08.002
Lokshina, I. V., Lanting, C. J. M., & Durkin, B. J. (2018). IoT-and big data-driven data analysis services for third parties, strategic implications and business opportunities. International Journal of Social Ecology and Sustainable Development, 9(3), 34–52. https://doi.org/10.4018/IJSESD.2018070103
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
Mariani, M., Baggio, R., Fuchs, M., & Hoeepken, W. (2018). Business intelligence and big data in hospitality and tourism: A systematic literature review. International Journal of Contemporary Hospitality Management, 30(12), 3514–3554. https://doi.org/10.1108/IJCHM-07-2017-0461
Martínez-López, F. J., Merigó, J. M., Valenzuela-Fernández, L., & Nicolás, C. (2018). Fifty years of the European Journal of Marketing: A bibliometric analysis. European Journal of Marketing, 52(1–2), 439–468. https://doi.org/10.1108/EJM-11-2017-0853
Matthias, O., Fouweather, I., Gregory, I., & Vernon, A. (2017). Making sense of big data – can it transform operations management? International Journal of Operations and Production Management, 37(1), 37–55. https://doi.org/10.1108/IJOPM-02-2015-0084
Mcafee, A., & Brynjolfsson, E. (2012). Spotlight on big data big data: The management revolution. Harvard Business Review, 90(October), 1–9. http://tarjomefa.com/wp-content/uploads/2017/04/6539-English-TarjomeFa-1.pdf
McColl-Kennedy, J. R., Zaki, M., Lemon, K. N., Urmetzer, F., & Neely, A. (2019). Gaining customer experience insights that matter. Journal of Service Research, 22(1), 8–26. https://doi.org/10.1177/1094670518812182
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. British Journal of Management, 30(2), 272–298. https://doi.org/10.1111/1467-8551.12343
Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2018). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and E-Business Management, 16(3), 547–578. https://doi.org/10.1007/s10257-017-0362-y
Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. Information and Management, 57(1), 103237. https://doi.org/10.1016/j.im.2019.103237
Mishra, D., Luo, Z., Hazen, B., Hassini, E., & Foropon, C. (2019). Organizational capabilities that enable big data and predictive analytics diffusion and organizational performance: A resource-based perspective. Management Decision, 57(8), 1734–1755. https://doi.org/10.1108/MD-03-2018-0324
Mugge, P., Abbu, H., Michaelis, T. L., Kwiatkowski, A., & Gudergan, G. (2020). Patterns of digitization: A practical guide to digital transformation. Research Technology Management, 63(2), 27–35. https://doi.org/10.1080/08956308.2020.1707003
Müller, O., Fay, M., & vom Brocke, J. (2018). The effect of big data and analytics on firm performance: An econometric analysis considering industry characteristics. Journal of Management Information Systems, 35(2), 488–509. https://doi.org/10.1080/07421222.2018.1451955
Müller, S. D., & Jensen, P. (2017). Big data in the Danish industry: Application and value creation. Business Process Management Journal, 23(3), 645–670. https://doi.org/10.1108/BPMJ-01-2016-0017
Nguyen Dang Tuan, M., Nguyen Thanh, N., & Le Tuan, L. (2019). Applying a mindfulness-based reliability strategy to the Internet of Things in healthcare – A business model in the Vietnamese market. Technological Forecasting and Social Change,  , 54–68. https://doi.org/10.1016/j.techfore.2018.10.024
O’Connor, C., & Kelly, S. (2017). Facilitating knowledge management through filtered big data: SME competitiveness in an agri-food sector. Journal of Knowledge Management, 21(1), 156–179. https://doi.org/10.1108/JKM-08-2016-0357
Ostrom, A. L., Parasuraman, A., Bowen, D. E., Patrício, L., & Voss, C. A. (2015). Service research priorities in a rapidly changing context. Journal of Service Research, 18(2), 127–159. https://doi.org/10.1177/1094670515576315
Paiola, M., & Gebauer, H. (2020). Internet of things technologies, digital servitization and business model innovation in BtoB manufacturing firms. Industrial Marketing Management,  , 245–264. https://doi.org/10.1016/j.indmarman.2020.03.009
Pauleen, D. J., & Wang, W. Y. C. (2017). Does big data mean big knowledge? KM perspectives on big data and analytics. Journal of Knowledge Management, 21(1, SI), 1–6. https://doi.org/10.1108/JKM-08-2016-0339
Philip Chen, C. L., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences,  , 314–347. https://doi.org/10.1016/j.ins.2014.01.015
Reis, C., Ruivo, P., Oliveira, T., & Faroleiro, P. (2020). Assessing the drivers of machine learning business value. Journal of Business Research,  , 232–243. https://doi.org/10.1016/j.jbusres.2020.05.053
Ren, S. J., Wamba, S. F., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal Of Production Research, 55(17), 5011–5026. https://doi.org/10.1080/00207543.2016.1154209
Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: A bibliometric analysis and systematic literature review. Management Decision, 57(8), 2052–2068. https://doi.org/10.1108/MD-07-2018-0821
Ritter, T., & Pedersen, C. L. (2020). Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Industrial Marketing Management,  , 180–190. https://doi.org/10.1016/j.indmarman.2019.11.019
Russom, P. (2011). Big data analytics. TDWI best practices report, 19 (4), 1-34.
Saggi, M. K., & Jain, S. (2018). A survey towards an integration of big data analytics to big insights for value-creation. Information Processing and Management, 54(5), 758–790. https://doi.org/10.1016/j.ipm.2018.01.010
Smyth, K. B., Croxton, K. L., Franklin, R., & Knemeyer, A. M. (2018). Thirsty in an ocean of data? Pitfalls and practical strategies when partnering with industry on big data supply chain research. Journal of Business Logistics, 39(3), 203–219. https://doi.org/10.1111/jbl.12187
Song, P., Zheng, C., Zhang, C., & Yu, X. (2018). Data analytics and firm performance: An empirical study in an online B2C platform. Information and Management, 55(5), 633–642. https://doi.org/10.1016/j.im.2018.01.004
Sorescu, A. (2017). Data-driven business model innovation. Journal of Product Innovation Management, 34(5), 691–696. https://doi.org/10.1111/jpim.12398
Sumbal, M. S., Tsui, E., Irfan, I., Shujahat, M., Mosconi, E., & Ali, M. (2019). Value creation through big data application process management: The case of the oil and gas industry. Journal of Knowledge Management, 23(8), 1566–1585. https://doi.org/10.1108/JKM-02-2019-0084
Sun, E. W., Chen, Y. T., & Yu, M. T. (2015). Generalized optimal wavelet decomposing algorithm for big financial data. International Journal of Production Economics,  , 194–214. https://doi.org/10.1016/j.ijpe.2014.12.033
Surbakti, F. P. S., Wang, W., Indulska, M., & Sadiq, S. (2020). Factors influencing effective use of big data: A research framework. Information and Management, 57(1), 103146. https://doi.org/10.1016/j.im.2019.02.001
Tambe, P. (2014). Big data investment, skills, and firm value. Management Science, 60(6), 1452–1469. https://doi.org/10.1287/mnsc.2014.1899
Tempini, N. (2017). Till data do us part: Understanding data-based value creation in data-intensive infrastructures. Information and Organization, 27(4), 191–210. https://doi.org/10.1016/j.infoandorg.2017.08.001
Trabucchi, D., & Buganza, T. (2020). Fostering digital platform innovation: From two to multi-sided platforms. Creativity and Innovation Management, 29(2), 345–358. https://doi.org/10.1111/caim.12320
Trabucchi, D., Buganza, T., Dell’Era, C., & Pellizzoni, E. (2018). Exploring the inbound and outbound strategies enabled by user generated big data: Evidence from leading smartphone applications. Creativity and Innovation Management, 27(1), 42–55. https://doi.org/10.1111/caim.12241
Trabucchi, D., Buganza, T., & Pellizzoni, E. (2017). Give away your digital services. Research-Technology Management, 60(2), 43–52. https://doi.org/10.1080/08956308.2017.1276390
Urbinati, A., Bogers, M., Chiesa, V., & Frattini, F. (2019). Creating and capturing value from big data: A multiple-case study analysis of provider companies. Technovation,  , 21–36. https://doi.org/10.1016/j.technovation.2018.07.004
Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Measuring scholarly impact, 285-320. Springer, Cham.
Heck, E. V. (2020). Big Data and disruptions in business models. Revista de Administração de Empresas, 59, 430-432.
Van Raan, A. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. TATuP - Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 12(1), 20–29. https://doi.org/10.14512/tatup.12.1.20
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626–639. https://doi.org/10.1016/j.ejor.2017.02.023
Wamba, S. F., Gunasekaran, A., Akter, S., fan Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research,  , 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009
Wamba, S. F., & Mishra, D. (2017). Big data integration with business processes: A literature review. Business Process Management Journal, 23(3, SI), 477–492. https://doi.org/10.1108/BPMJ-02-2017-0047
Wang, Y., & Hajli, N. (2017). Exploring the path to big data analytics success in healthcare. Journal of Business Research,  , 287–299. https://doi.org/10.1016/j.jbusres.2016.08.002
Wang, Y., Kung, L. A., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change,  , 3–13. https://doi.org/10.1016/j.techfore.2015.12.019
Wiener, M., Saunders, C., & Marabelli, M. (2020). Big-data business models: A critical literature review and multiperspective research framework. Journal of Information Technology, 35(1), 66–91. https://doi.org/10.1177/0268396219896811
Wilkin, C., Ferreira, A., Rotaru, K., & Gaerlan, L. R. (2020). Big data prioritization in SCM decision-making: Its role and performance implications. International Journal of Accounting Information Systems,  https://doi.org/10.1016/j.accinf.2020.100470
Xie, K., Wu, Y., Xiao, J., & Hu, Q. (2016). Value co-creation between firms and customers: The role of big data-based cooperative assets. Information and Management, 53(8), 1034–1048. https://doi.org/10.1016/j.im.2016.06.003
Ylijoki, O., & Porras, J. (2019). A recipe for big data value creation. Business Process Management Journal, 25(5), 1085–1100. https://doi.org/10.1108/BPMJ-03-2018-0082
Zeng, J., & Glaister, K. W. (2018). Value creation from big data: Looking inside the black box. Strategic Organization, 16(2), 105–140. https://doi.org/10.1177/1476127017697510
Zeng, J., & Khan, Z. (2019). Value creation through big data in emerging economies: The role of resource orchestration and entrepreneurial orientation. Management Decision, 57(8), 1818–1838. https://doi.org/10.1108/MD-05-2018-0572
Zhang, X., Yu, Y., & Zhang, N. (2020). Sustainable supply chain management under big data: A bibliometric analysis. Journal of Enterprise Information Management, 34(1), 427-445.