A Systematic Literature Review of Organization Resilience, Business Continuity, and Risk: Towards Process Resilience and Continuity

Document Type : Review article

Authors

1 Associate Professor, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

2 PhD Student, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

3 Professor of Healthcare Systems Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

This study attempted to review the articles and explore the gaps and challenges in the areas of resilience, business continuity, risk, and process safety with the aim of providing several directions for future research to understand different research directions in these areas with different perspectives. In addition, in this study, the relationship of articles in these areas with each other was examined. In this research project, related studies were reviewed and reported to identify presented frameworks, models, and methods for them. In the first phase, the articles were divided into three categories according to their similarity, namely “maximizing the value of business continuity and resilience,” “maximizing process safety and the effect of risk and resilience factors,” and “minimizing risk and effect of uncertainty.” In the second phase, the appropriate conceptual frameworks titled “research house” based on resilience, business continuity, and risk categories were created for each category. In the third phase, 22 closed codes were obtained by carefully reviewing the articles, and their co-occurrence network was investigated. The main findings of this article were categorizing the studied articles, providing conceptual frameworks resulting from article analysis, and presenting a conceptual model.

Keywords

Main Subjects


Article Title [Persian]

مروری سیستماتیک از تحقیقات حوزه تاب آوری سازمانی، تداوم کسب و کار و ریسک: حرکت به سمت تاب آوری و تداوم فرآیند

Authors [Persian]

  • بختیار استادی 1
  • مهناز ابراهیمی 2
  • محمد مهدی سپهری 3
  • علی حسین زاده کاشان 1
1 دانشیار، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس، تهران، ایران
2 دانشجوی دکتری مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس ، تهران، ایران
3 استاد، دانشکده مهندسی صنایع و سیستم‌ها، دانشگاه تربیت مدرس، تهران، ایران
Abstract [Persian]

پژوهش حاضر سعی دارد با مروری بر مقالات و بررسی شکاف‌ها و چالش‌های موجود تحقیقاتی در حوزه‌های تاب‌آوری، تداوم کسب‌وکار، ریسک و ایمنی فرآیند با هدف ارائه چندین جهت برای تحقیقات آتی به درک پژوهش‌های مختلف در این حوزه‌ها با دیدگاه‌های مختلف بپردازد. همچنین در این پژوهش رابطه مقالات این حوزه ها با یکدیگر بررسی شده است. در این پژوهش، پژوهش‌های مرتبط بررسی و گزارش شده است تا چارچوب‌ها، مدل‌ها و روش‌های ارائه‌شده برای آنها شناسایی شود. در مرحله اول، مقالات بر اساس شباهت به سه دسته «به حداکثر رساندن ارزش تداوم کسب‌وکار و تاب آوری»، «به حداکثر رساندن ایمنی فرآیند و تأثیر عوامل ریسک و تاب‌آوری» و «به حداقل رساندن ریسک و تأثیر عدم قطعیت.» در مرحله دوم چارچوب های مفهومی مناسب تحت عنوان خانه تحقیق مبتنی بر سه حوزه تاب‌آوری، تداوم کسب‌وکار، ریسک برای هر دسته ایجاد شده است. در مرحله سوم با بررسی دقیق مقالات بیست و دو کد بسته به دست آمده و شبکه های هم رخدادی آنها بررسی شده است. یافته های اصلی این مقاله، به دست آوردن دسته بندی مقالات مورد مطالعه، ارائه چارچوب های مفهومی حاصل از تحلیل مقاله و همچنین ارائه مدل مفهومی است.

Keywords [Persian]

  • تاب‌آوری
  • تداوم کسب و کار
  • ریسک
  • ایمنی فرایند
  • منابع
Abdalla, I. M. (2002). Fatality risk assessment and modeling of drivers responsibility for causing traffic accidents in Dubai. Journal of Safety Research, 33(4), 483-496.‏
Alkhaleel, B. A., Liao, H., & Sullivan, K. M. (2021). ‏Risk and resilience-based optimal post-disruption restoration for metrics infrastructures under uncertainty. European Journal of Operational Research, 296(1), 174-202.
Almoghathawi, Y., & Barker, K. (2019). Component importance measures for interdependent infrastructure network resilience.  Computers & Industrial Engineering, 133, 153-164.
Amin, M. T., Khan, F., & Amyotte, P. (2019). A bibliometric review of process safety and risk analysis. Process Safety and Environmental Protectio, 126, 366-381.
Asnar, Y., & Giorgini, P. (2008). Analyzing business continuity through a multi-layers model. In: Dumas, M., Reichert, M., Shan, MC. (Eds.), In International Conference on Business Process Management (pp. 212-227). Springer, Berlin, Heidelberg.
Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1-13.
Azadegan, A., Srinivasan, R., Blome, C., & Tajeddini, K. (2019). Learning from near-miss events: An organizational learning perspective on supply chain disruption response. International Journal of Production Economics, 216, 215-226.
Azadegan, A., Syed, A., Blome, C., & Tajeddini, K. (2020). Supply chain involvement in business continuity management: Effects on reputational and operational damage containment from supply chain disruptions. Supply Chain Management: An International Journal, 25(6), 747-772.
Azadeh, A., Salehi, V., Arvan, M., & Dolatkhah, M.  (2014). Assessment of resilience engineering factors in high-risk environments by fuzzy cognitive maps: A petrochemical plant. Safety Science, 68, 99-107.‏
Azadeh, A., Salehi, V., Ashjari, B., & Saberi, M. (2014). Performance evaluation of integrated resilience engineering factors by data envelopment analysis: The case of a petrochemical plant.  Process Safety and Environmental Protection, 92(3), 231-241.
Azadeh, A., Salehi, V., Mirzayi, M., & Roudi, E. (2017). Combinatorial optimization of resilience engineering and organizational factors in a gas refinery by a unique mathematical programming approach.  Human Factors and Ergonomics in Manufacturing & Service Industries, 27(1), 53-65.‏
Azusa, K., & Hiroyuki, Y. (2013). Organizational resilience: An investigation of key factors that promote the rapid recovery of organizations. Academic Journal of Interdisciplinary Studies, 2(9), 188-194.
Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2013). Resilience-based network component importance measures. Reliability Engineering & System Safety, 117, 89-97.‏
Baroud, H., Barker, K., & Ramirez-Marquez, J. E. (2014). Importance measures for inland waterway network resilience. Transportation Research Part E: Logistics and Transportation Review, 62, 55-67.‏
Bhamra, R., Dani, S., & Burnard, K. (2011). Resilience: The concept, a literature review and future directions.  International Journal of Production Research, 49(18), 5375-5393.
Bhavathrathan, B. K., & Patil, G. R. (2015). Capacity uncertainty on urban road networks: A metrics state and its applicability in resilience quantification. Computers, Environment and Urban Systems, 54, 108-118.
Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney, K., Wallace, W.A. and Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake spectra, 19(4), pp.733-752.
Bryson, K. M. N., Millar, H., Joseph, A., & Mobolurin, A. (2002). Using formal MS/OR modeling to support disaster recovery planning. European Journal of Operational Research, 141(3), 679-688.‏
Castillo-Borja, F., Vázquez-Román, R., Quiroz-Pérez, E., Díaz-Ovalle, C., & Mannan, M. S. (2017). A resilience index for process safety analysis. Journal of Loss Prevention in the Process Industries, 50, 184-189.
Chang, S. E., & Shinozuka, M. (2004). Measuring improvements in the disaster resilience of communities. Earthquake Spectra, 20(3), 739-755.
Chen, L., & Miller-Hooks, E. (2012). Resilience: an indicator of recovery capability in intermodal freight transport. Transportation Science, 46(1), 109-123.
Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience: A foundation for operational metrics.  Transport Policy, 18(2), 307-317.
Dağdeviren, M., & Yüksel, İ. (2008). Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management. Information Sciences, 178(6), 1717-1733.
Dantzer, R., Cohen, S., Russo, S., & Dinan, T. (2018). Resilience and immunity. Brain, Behavior, and Immunity, 74, 28-42.
Dixit, V., Seshadrinath, N., & Tiwari, M. K. (2016). Performance measures based optimization of supply chain network resilience: A NSGA-II+ Co-Kriging approach. Computers & Industrial Engineering, 93, 205-214.‏
Enjalbert, S., Vanderhaegen, F., Pichon, M., Ouedraogo, K. A., & Millot, P. (2011). Assessment of transportation system resilience. In: Cacciabue, P., Hjälmdahl, M., Luedtke, A., Riccioli, C. (Eds.), Human modelling in assisted transportation (pp. 335-341), Springer, Milano.
Fani, S. V., & Subriadi, A. P. (2019). Business continuity plan: Examining of multi-usable framework. Procedia Computer Science, 161, 275-282.‏
Gibb, F., & Buchanan, S. (2006). A framework for business continuity management. International Journal of Information Management, 26(2), 128-141.‏
Gong, J., & You, F. (2018). Resilient design and operations of process systems: Nonlinear adaptive robust optimization model and algorithm for resilience analysis and enhancement. Computers & Chemical Engineering, 116, 231-252.‏
Guo, C., Khan, F., & Imtiaz, S. (2018). Risk assessment of process system considering dependencies. Journal of Loss Prevention in the Process Industries, 55, 204-212.‏
Hassel, H., & Cedergren, A. (2021). Integrating risk assessment and business impact assessment in the public crisis management sector. International Journal of Disaster Risk Reduction, 56, 102136.‏
Henry, D., & Ramirez-Marquez, J. E. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 99, 114-122.‏
Herbane, B. (2010). The evolution of business continuity management: A historical review of practices and drivers. Business history, 52(6), 978-1002.
Hong, E. S., Lee, I. M., Shin, H. S., Nam, S. W., & Kong, J. S. (2009). Quantitative risk evaluation based on event tree analysis technique: Application to the design of shield TBM. Tunnelling and Underground Space Technology, 24(3), 269-277.‏
Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47-61.
Holling, C.S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4 (1), 1–23.
Jain, P., Mentzer, R., & Mannan, M. S. (2018). Resilience metrics for improved process-risk decision making: Survey, analysis and application. Safety Science, 108, 13-28.‏
Jain, P., Pasman, H. J., Waldram, S., Pistikopoulos, E. N., & Mannan, M. S. (2018). Process Resilience Analysis Framework (PRAF): A systems approach for improved risk and safety management. Journal of Loss Prevention in the Process Industries, 53, 61-73.
Jain, P., Pistikopoulos, E. N., & Mannan, M. S. (2019). Process resilience analysis based data-driven maintenance optimization: Application to cooling tower operations. Computers & Chemical Engineering, 121, 27-45.
Kantur, D. and Iseri-Say, A. (2012) Organizational Resilience: A Conceptual Integrative Framework. Journal of Management & Organization, 18, 762-773.
Kalantarnia, M., Khan, F., & Hawboldt, K. (2009). Dynamic risk assessment using failure assessment and Bayesian theory. Journal of Loss Prevention in the Process Industries, 22(5), 600-606.‏
Kawamura, S., & Nakatani, Y. (2010). Business Continuity management system that supports progress management and operational planning. In 2010 IEEE International Conference on Systems, Man and Cybernetics (pp. 1407-1413). Istanbul ,Turkey, IEEE.
Khakzad, N., Khan, F., & Amyotte, P. (2012). Dynamic risk analysis using bow-tie approach. Reliability Engineering & System Safety, 104, 36-44.
Li, C. Y., Wang, J. H., Zhi, Y. R., Wang, Z. R., & Gong, J. H. (2018). Simulation of the chlorination process safety management system based on system dynamics approach. Procedia Engineering, 211, 332-342.
Li, W., Cao, Q., He, M., & Sun, Y. (2018).  Industrial non-routine operation process risk assessment using job safety analysis (JSA) and a revised Petri net. Process Safety and Environmental Protection, 117, 533-538.‏
Madni, A. M., & Jackson, S. (2009). Towards a conceptual framework for resilience engineering. IEEE Systems Journal, 3(2), 181-191.
Margherita, A., & Heikkilä, M. (2021). Business continuity in the COVID-19 emergency: A framework of actions undertaken by world-leading companies. Business horizons, 64(5), 683-695.
Marhavilas, P. K., & Koulouriotis, D. E. (2008). A risk-estimation methodological framework using quantitative assessment techniques and real accidents’ data: Application in an aluminum extrusion industry. Journal of Loss Prevention in the Process Industries, 21(6), 596-603.‏
Marhavilas, P. K., & Koulouriotis, D. E. (2012). A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider. Reliability Engineering & System Safety, 97(1), 36-46.‏
Medina, H., Arnaldos, J., & Casal, J. (2009). Process design optimization and risk analysis. Journal of Loss Prevention in the Process Industries, 22(5), 566-573.‏
Mokhtarian Daloie. R, Ostadi. B. (2019). Developing a discrete-event simulation model for improving the quality of services: A case study in urology unit at a kidney center. Journal of Engineering and Quality Management, 9(3), 244-260.
Mutlu, N. G., & Altuntas, S. (2019). Risk analysis for occupational safety and health in the textile industry: Integration of FMEA, FTA, and BIFPET methods. International Journal of Industrial Ergonomics, 72, 222-240.‏
Najarian, M., & Lim, G. J. (2020). Optimizing infrastructure resilience under budgetary constraint. Reliability Engineering & System Safety, 198, 106801.‏
Namvar, H., & Bamdad, S. (2021). Performance evaluation of process industries resilience: Risk-based with a network approach. Journal of Loss Prevention in the Process Industries, 71, 104474.‏
Omer, M., Mostashari, A., & Nilchiani, R. (2013). Assessing resilience in a regional road-based transportation network. International Journal of Industrial and Systems Engineering, 13(4), 389-408.
Ostadi, B., &  Abbasi Harofteh, S. (2020).  A novel risk assessment approach using Monte Carlo simulation based on co-occurrence of risk factors: A case study of a petrochemical plant construction. Scientia Iranica: Transactions on Industrial Engineering (E), Volume 29, Issue 3, 1755-1765. https://doi.org/10.24200/sci,.55513.4258
Ostadi, B., Ghaffari, S., & Rastegar, M. A. (2020). A method to calculate the acceptance probability and risk of rejection of bid prices on the electricity market. Iranian Electric Industry Journal of Quality and Productivity, 9(2), 55-59.
Ostadi, B., Ghorbani, A., & Mokhtarian, R. (2018). Modelling the estimation of the optimum number of required equipment and manpower for operational processes under uncertainty conditions (case study: Textile industry). Journal of Industrial Engineering, 52(4), 509-521.
Ostadi, B., Sedeh, O. M., & Kashan, A. H. (2020). Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model. Energy, 191, 116516.‏
Ostadi, B., Seifi, M. M., & Husseinzadeh Kashan, A. (2021). A multi-objective model for resource allocation in disaster situations to enhance the organizational resilience and maximize the value of business continuity with considering events interactions. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(5), 814-830. https://doi.org/10.1177/1748006X21991027
Ouedraogo, K. A., Enjalbert, S., & Vanderhaegen, F. (2013). How to learn from the resilience of Human–Machine Systems? Engineering Applications of Artificial Intelligence, 26(1), 24-34.
Ouyang, M., Dueñas-Osorio, L., & Min, X. (2012). A three-stage resilience analysis framework for urban infrastructure systems. Structural Safety, 36, 23-31.
Paltrinieri, N., Comfort, L., & Reniers, G. (2019). Learning about risk: Machine learning for risk assessment. Safety Science, 118, 475-486.
Pant, R., Barker, K., Ramirez-Marquez, J. E., & Rocco, C. M. (2014). Stochastic measures of resilience and their application to container terminals. Computers & Industrial Engineering, 70, 183-194.‏
Pishnamazzadeh, M., Sepehri, M. M., & Ostadi, B. (2020). An Assessment Model for Hospital Resilience according to the Simultaneous Consideration of Key Performance Indicators: A system dynamics approach. Perioperative Care and Operating Room Management, 20, 100-118.‏
Rabbani, M., Soufi, H. R., & Torabi, S. A. (2016). Developing a two-step fuzzy cost–benefit analysis for strategies to continuity management and disaster recovery. Safety Science, 85, 9-22.‏
Randeree, K., Mahal, A., & Narwani, A. (2012). A business continuity management maturity model for the UAE banking sector. Business Process Management Journal, Vol. 18 No. 3, 472-492. https://doi.org/10.1108/14637151211232650
Rezaei Soufi, H., Torabi, S. A., & Sahebjamnia, N. (2019). Developing a novel quantitative framework for business continuity planning. International Journal of Production Research, 57(3), 779-800.
Rezaie, K., Amalnik, M. S., Gereie, A., Ostadi, B., & Shakhseniaee, M. (2007). Using extended Monte Carlo simulation method for the improvement of risk management: Consideration of relationships between uncertainties. Applied Mathematics and Computation, 190(2), 1492-1501.‏
Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383-398.
Saad, S. K., & Elshaer, I. A. (2020). Justice and trust’s role in employees’ resilience and business’ continuity: Evidence from Egypt. Tourism Management Perspectives35, 100712.
Sahebjamnia, N., Torabi, S. A., & Mansouri, S. A. (2015). Integrated business continuity and disaster recovery planning: Towards organizational resilience. European Journal of Operational Research, 242(1), 261-273.
Sahebjamnia, N., Torabi, S. A., & Mansouri, S. A. (2018). Building organizational resilience in the face of multiple disruptions. International Journal of Production Economics, 197, 63-83.‏
Stephenson, A.V. (2010). November. Measuring the Effectiveness of Your BCM Programme through Measuring Resilience. In BCM world conference and exhibition, London.
Taleb-Berrouane, M., & Khan, F. (2019). Dynamic resilience modelling of process systems. Chemical Engineering, 77, 313-318.
Taroun, A. (2014). Towards a better modelling and assessment of construction risk: Insights from a literature review. International journal of Project management, 32(1), 101-115.
Torabi, S. A., Giahi, R., & Sahebjamnia, N. (2016). An enhanced risk assessment framework for business continuity management systems. Safety Science, 89, 201-218.‏
Torabi, S. A., Rezaei Soufi, H.R., & Sahebjamnia, N. (2014). A new framework for business continuity management (with case study). Journal of Safety Science, 68, 309- 323.
Vileiniskis, M., & Remenyte-Prescott, R. (2017). Quantitative risk prognostics framework based on Petri Net and Bow-Tie models. Reliability Engineering & System Safety, 165, 62-73.‏
Wang, W., Jiang, X., Xia, S., & Cao, Q. (2010). Incident tree model and incident tree analysis method for quantified risk assessment: An in-depth accident study in traffic operation. Safety Science, 48(10), 1248-1262.‏
Wu, D., Li, J., Xia, T., Bao, C., Zhao, Y., & Dai, Q. (2018). A multiobjective optimization method considering process risk correlation for project risk response planning. Information Sciences, 467, 282-295.‏
Xie, X., & Guo, D. (2018). Human factors risk assessment and management: Process safety in engineering. Process Safety and Environmental Protection, 113, 467-482.
Xing, J., Zeng, Z., & Zio, E. (2019). Dynamic business continuity assessment using condition monitoring data. International Journal of Disaster Risk Reduction, 41, 101334.‏
Yarveisy, R., Gao, C., & Khan, F. (2020). A simple yet robust resilience assessment metrics. Reliability Engineering & System Safety, 197, 106810.‏
Zarei, E., Khakzad, N., Cozzani, V., & Reniers, G. (2019). Safety analysis of process systems using Fuzzy Bayesian Network (FBN). Journal of Loss Prevention in the Process Industries, 57, 7-16.‏
Zarei, E., Mohammadfam, I., Azadeh, A., Khakzad, N., & Mirzai, M. (2018). Dynamic risk assessment of chemical process systems using Bayesian Network. Iran Occupational Health, 15(3), 103-117.
Zeng, Z., & Zio, E. (2017).An integrated modeling framework for quantitative business continuity assessment. Process Safety and Environmental Protection106, 76-88.
Zeng, Z., & Zio, E. (2018). Dynamic risk assessment based on statistical failure data and condition-monitoring degradation data. IEEE Transactions on Reliability, 67(2), 609-622.‏
Zhang, X., Mahadevan, S., Sankararaman, S., & Goebel, K. (2018). Resilience-based network design under uncertainty. Reliability Engineering & System Safety169, 364-379.
Zio, E. (2018). The future of risk assessment. Reliability Engineering & System Safety, 177, 176-190.
Zobel, C. W. (2011). Representing perceived tradeoffs in defining disaster resilience. Decision Support Systems, 50(2), 394-403.
Zobel, C. W., & Khansa, L. (2014). Characterizing multi-event disaster resilience. Computers & Operations Research, 42, 83-94.‏