The RFMRv Model for Customer Segmentation Based on the Referral Value

Document Type : Research Paper

Authors

1 Faculty of Electrical Engineering, Computer and Information Technology, Qazvin Islamic Azad University, Qazvin, Iran

2 Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran

Abstract

The development of social networks provides numerous venues for customers to share their views, preferences, or experiences with others. Thus, the Referral programs have become the most valuable forms of marketing. Additionally, studies have emphasized the positive impact of referral programs on consumers’ intentions to purchase products or services, which increases the need for considering referral value as part of customer value. Hence, this study analyzed customers’ behavior in social media by extending the RFM model and proposing a new RFMRv model in which Rv is the referral value of customers. First, the customer graph of invitations was used to calculate customers’ referral value. Then, the K-Mean algorithm was used to cluster customers based on the CRISP-DM methodology. Finally, the CLV for each cluster was calculated. The results indicated that the referral-acquired customers are more valuable than other customers and proved that the RFMRv model provides better clustering and valuation.

Keywords

Main Subjects


Alizadeh Zoeram, A., & Karimi Mazidi, A. R. (2018). New approach for customer clustering by integrating the LRFM model and fuzzy inference system. Iranian Journal of Management Studies, 11(2), 351-378. https://doi.org/10.22059/IJMS.2018.242528.672839
Ansari, A., & Riasi, A. (2016). Customer clustering using a combination of fuzzy c-means and genetic algorithms. International Journal of Business and Management, 11(7), 59.
Ariesta, I., & Zuliestiana, D. A. (2019). Pengaruh Social Media Marketing Melalui Facebook Terhadap Minat Beli Produk Kartu Halo Pt. Telkomsel West –Jabodetabek. eProceedings of Management, 6(2). 1-19.
Armelini, G., Barrot, C., & Becker, J. U. (2015). Referral programs, customer value, and the relevance of dyadic characteristics. International Journal of Research in Marketing, 32(4), 449-452. https://doi.org/10.1016/j.ijresmar.2015.09.004
Beheshtian-Ardakani, A., Fathian, M., & Gholamian, M. (2018). A novel model for product bundling and direct marketing in e-commerce based on market segmentation. Decision Science Letters, 7(1), 39–54. https://doi.org/10.5267/j.dsl.2017.4.005
Belo, R., & Li, T. (2022). Social referral programs for freemium platforms. Management Science, 68(12), 8933-8962. https://doi.org/10.1287/mnsc.2022.4301.
Bayon, T., Gutsche, J., & Bauer, H. (2002). Customer Equity Marketing: Touching the Intangible. European Management Journal, 20(3), 213-222. https://doi.org/10.1016/S0263-2373(02)00037-3
Boros, E., & Papasava, A. (2020). Referral Marketing in Online Higher Education. Journal of Marketing Communications for Higher Education, 1(3), 1-36. https://doi.org/10.6017/jmche.v1i3.11999
Brown, T.J., Barry, T.E., Dacin, P.A. & Gunst, R.F. (2005), Spreading the word: Investigating antecedents of consumers’ positive word-of-mouth intentions and behaviors in a retailing context, Journal of the Academy of Marketing Science, 33(2), 123-138. https://doi.org/10.1177/0092070304268417
Buczynski, J. (2007). Referral Marketing Campaigns: “Slashdotting” Electronic Resources. The Serials Librarian, 53(3), 193-209. https://doi.org/10.1300/J123v53n03_13
Baarsch, J., & Celebi, M. E. (2012, March). Investigation of internal validity measures for K-means clustering. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 1, pp. 14-16).
Castronovo, C., & Huang, L. (2012). Social media in an alternative marketing communication model. Journal of Marketing Development and Competitiveness, 6(1), 117–134.
Chang, H. C., & Tsai, H. P. (2011). Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications, 38(12), 14499-14513. https://doi.org/10.1016/j.eswa.2011.05.034
Chen, Z.-Y., & Fan, Z.-P. (2013). Dynamic customer lifetime value prediction using longitudinal data: An improved multiple kernel SVR approach. Knowledge-Based Systems, 43(2013), 123-134. https://doi.org/10.1016/j.knosys.2013.01.022
Cornelsen, J., & Diller, H. (1998). References within the context of customer valuation. In IMP Conference (14th) (Vol. 14). IMP.
Chu, S.-C., Lien, C.-H., & Cao, Y. (2019). Electronic word-of-mouth (eWOM) on WeChat: Examining the influence of sense of belonging, need for self-enhancement, and consumer engagement on Chinese travellers’ eWOM. International Journal of Advertising, 38(1), 26–49.  https://doi.org/10.1080/02650487.2018.1470917
Cornelsen, J. (2002). What is the customer worth? Customer value analyses in relationship marketing on the basis of car buyers. Yearbook of Marketing and Consumer Research, 1(1), 27-46.
Costa, S. B. D., Claro, D. P., & Bortoluzzo, A. B. (2018). The influence of customer value on word of mouth: a study of the financial services company in Brazil. Revista Brasileira de Gestão de Negócios, 20(2018), 210-231. https://doi.org/10.7819/rbgn.v20i2.3798
Da Costa, S. B., Claro, D. P., & Bortoluzzo, A. B. (2018). The influence of customer value on word of mouth: a study of the financial services company in Brazil. Revista Brasileira de Gestão de Negócios, 20(2), 210-231. https://doi.org/10.7819/rbgn.v20i2.3798 
Damm, R., & Rodríguez Monroy, C. (2011). A review of the customer lifetime value as a customer profitability measure in the context of customer relationship management. Intangible Capital, 7(2), 261-279.
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909
Doğan, O., Ayçin, E., & Bulut, Z. A. (2018). Customer segmentation by using RFM model and clustering methods: a case study in retail industry. International Journal of Contemporary Economics and Administrative Sciences, 8(1), 1–19.
Dhameeth, G.D , Dissanayake, D.M.R, Gagnon, D . & Shannon, C (2020). Moderating Effects of Customer Lifetime Value and Referral Value on Customer Service of Frontline Employees for Customer and Organizational Satisfaction: A Comparative Analysis. Journal of Marketing Management, 8 (2), 56-68. https://doi.org/10.15640/jmm.v8n2a6
Dose, D. B., Walsh, G., Beatty, S. E., & Elsner, R. (2019). Unintended reward costs: The effectiveness of customer referral reward programs for innovative products and services. Journal of the Academy of Marketing Science, 47(3), 438-459. https://doi.org/10.1007/s11747-019-00635-z
Emini, A., & Zeqiri, J. (2021). The impact of social media marketing on purchase intention in a transition economy: The mediating role of brand awareness and brand engagement. Entrenova-Enterprise Research Innovation, 7(1), 256-266. https://doi.org/10.54820/FDOR9238
Erkan, I., & Evans, C. (2016). The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in human behavior, 61(2016), 47-55. https://doi.org/10.1016/j.chb.2016.03.003
Ernawati, E., Baharin, S. S. K., & Kasmin, F. (2022). Target Market Determination for Information Distribution and Student Recruitment Using an Extended RFM Model with Spatial Analysis. Journal of Distribution Science20(6), 1-10. https://doi.org/10.15722/jds.20.06.202206.1
Falcetti, A. (2019). Analyzing the effect of exposure to referral program on customer referral value: a cross national comparative research between the Netherlands and Italy. (Master’s thesis) Department of Business and Management, Chair of Marketing Metrics. https://tesi.luiss.it/id/eprint/25830
Fan, A., Wu, L., & Shen, H. (2019). The interaction effects of consumer susceptibility to interpersonal influence and type of word-of-mouth on Chinese consumers’ restaurant choices. Journal of Foodservice Business Research, 22(4), 387–400. https://doi.org/10.1080/15378020.2019.1626209
Fu, X., & Pang, J. (2022). Effect of e-referral incentive programs on referrer loyalty on social platforms. The Service Industries Journal, 42(15-16), 1234-1255. https://doi.org/10.1080/02642069.2018.1505872
Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business research, 59(4), 449-456. https://doi.org/10.1016/j.jbusres.2005.10.004
Guha, S., Harrigan, P., & Soutar, G. (2018). Linking social media to customer relationship management (CRM): a qualitative study on SMEs. Journal of Small Business & Entrepreneurship, 30(3), 193-214. https://doi.org/10.1080/08276331.2017.1399628
Guo, Z. (2012). Optimal decision making for online referral marketing. Decision Support Systems, 52(2), 373-383. https://doi.org/10.1016/j.dss.2011.09.004
Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishnaker N., Sriram, S. (2006). Modeling customer lifetime value. Journal of Service Research, 9(2), 139–155. https://doi.org/10.1177/1094670506293810
Haghighi, M., Hazave Hesar Maskan, B., Ashkani, M., & Abasi, A. (2017). Implementation of Marketing Strategies Based on Customer Lifetime and Referral Value (Case Study: broadband Internet Service Industry). Strategic Management Researches, 23(64), 9-25. https://doi.org 20.1001.1.22285067.1396.23.64.1.0
Hajipour, B., & Esfahani, M. (2019). Delta model application for developing customer lifetime value. Marketing Intelligence & Planning, 37(3), 298-309. https://doi.org/10.1108/MIP-06-2018-0190
Hu, H. H., Wang, L., Jiang, L., & Yang, W. (2019). Strong ties versus weak ties in word-of-mouth marketing. BRQ Business Research Quarterly, 22(4), 245-256. https://doi.org/10.1016/j.brq.2018.10.004
Hu, X., Shi, Z., Yang, Y., & Chen, L. (2020, April). Classification method of internet catering customer based on improved RFM model and cluster analysis. In 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (pp. 28-31). IEEE. https://doi.org/10.1109/ICCCBDA49378.2020.9095607
Huang, S., Qin, S., Jiang, X., & Cao, Y. (2022, October). A travel customer segmentation method based on improved RFM and k-means++. In Proceedings of the 5th International Conference on Computer Science and Software Engineering (pp. 436-440). https://doi.org/10.1145/3569966.3570085
Huang, Y., Zhang, M., & He, Y. (2020). Research on improved RFM customer segmentation model based on K-Means algorithm. In 2020 5th International Conference on Computational Intelligence and Applications (ICCIA) (pp. 24-27). IEEE. https://doi.org/10.1109/ICCIA49625.2020.00012
Huete-Alcocer, N. (2017). A literature review of word of mouth and electronic word of mouth: Implications for consumer behavior. Frontiers in psychology, 8(2017), 1256-1262. https://doi.org/10.3389/fpsyg.2017.01256
Ibrahim, M. R. K., & Tyasnurita, R. (2022, September). LRFM Model Analysis for Customer Segmentation Using K-Means Clustering. In 2022 International Conference on Electrical and Information Technology (IEIT) (pp. 383-391). IEEE. https://doi.org/10.1109/IEIT56384.2022.9967896
Ismagilova, E., Slade, E. L., Rana, N. P., & Dwivedi, Y. K. (2020). The effect of electronic word of mouth communications on intention to buy: A meta-analysis. Information Systems Frontiers, 22(5), 1203-1226. https://doi.org/10.1007/s10796-019-09924-y
Jiang, F., Mei, S., & Zhong, W. (2020). Impact of customer’s social value on optimizing referral reward programs. Journal of Organizational Computing and Electronic Commerce, 30(3), 279-295. https://doi.org/10.1080/10919392.2020.1761750
Jung, J., Bapna, R., Gupta, A., & Sen, S. (2021). Impact of incentive mechanism in online referral programs: evidence from randomized field experiments. Journal of Management Information Systems, 38(1), 59-81.https://doi.org/10.1080/07421222.2021.1870384
Kandeil, D. A., Saad, A. A., & Youssef, S. M. (2014, September). A two-phase clustering analysis for B2B customer segmentation. In 2014 International Conference on Intelligent Networking and Collaborative Systems (pp. 221-228). IEEE. https://doi.org/10.1109/INCoS.2014.49
Karagiannis, R., & Karagiannis, G. (2020). Constructing composite indicators with Shannon entropy: The case of Human Development Index. Socio-Economic Planning Sciences, 70(2020), 100701. https://doi.org/10.1016/j.seps.2019.03.007
Karki, D. (2018). A hybrid approach for managing retail assortment by categorizing products based on consumer behavior (Doctoral dissertation, Dublin, National College of Ireland).
Katz, E., & Lazarsfeld, P. F. (2017). Personal influence: The part played by people in the flow of mass communications. Routledge. https://doi.org/10.4324/9781315126234
Keh, H. T., & Pang, J. (2010). Customer reactions to service separation. Journal of Marketing74(2), 55-70. https://doi.org/10.1509/jm.74.2.55
Khajvand, M., and M. J. Tarokh. (2011). Estimating Customer Future Value of Different Customer Segments Based on Adapted RFM Model in Retail Banking Context. Procedia Computer Science. 3(2011), 1327–1332. https://doi.org/10.1016/j.procs.2011.01.011
Kuang, D., Li, X. F., & Bi, W. W. (2021). How to Effectively Design Referral Rewards to Increase the Referral Likelihood for Green Products. Sustainability, 13(13), 7177-7183. https://doi.org/10.3390/su13137177
Kumar, V., Aksoy, L., Donkers, B., Venkatesan, R., Wiesel, T., & Tillmanns, S. (2010a). Undervalued or overvalued customers: capturing total customer engagement value. Journal of service research, 3(3), 297-310. https://doi.org/10.1177/1094670510375602
Kumar, V., Petersen, J. A., & Leone, R. P. (2007). How valuable is word of mouth?. Harvard business review85(10), 139-151.
Kumar, V., Petersen, J. A., & Leone, R. P. (2013). Defining, measuring, and managing business reference value. Journal of Marketing, 77(1), 68-86. https://doi.org/10.1509/jm.11.0424
Kumar, V., Petersen, J. A., & Leone, R. P. (2010b). Driving Profitability by Encouraging Customer Referrals: Who, When, and How. Journal of Marketing, 74(5), 1–17. https://doi.org/10.1509/jmkg.74.5.1
Kurniawati, D., & Arifin, N. (2015). Strategi pemasaran melalui media sosial dan minat beli mahasiswa. Jurnal Simbolika: Research and Learning in Communication Study (E-Journal), 1(2), 193-200. https://doi.org/10.31289/simbollika.v1i2.200
Leung, F. F., Gu, F. F., & Palmatier, R. W. (2022). Online influencer marketing. Journal of the Academy of Marketing Science, 1-26. https://doi.org/10.1007/s11747-021-00829-4
Liu, D. R., and Y. Y. Shih. (2005). Integrating AHP and Data Mining for Product Recommendation Based on Customer Lifetime Value. Information & Management, 42(3), 387–400. https://doi.org/10.1016/j.im.2004.01.008
Mahdee, N., Shourav, I. R., Tabassum, T., Nur, E., & Md Amir, H. H. (2022). Customer segmentation using K-means (Doctoral dissertation, Brac University). http://hdl.handle.net/10361/17617
Mahfuza, R., Islam, N., Toyeb, M., Emon, M. A. F., Chowdhury, S. A., & Alam, M. G. R. (2022). LRFMV: An efficient customer segmentation model for superstores. Plos one17(12), e0279262. https://doi.org/10.1371/journal.pone.0279262
Maria, S., Pusriadi, T., Hakim, Y. P., & Darma, D. C. (2019). The effect of social media marketing, word of mouth, and effectiveness of advertising on brand awareness and intention to buy. Jurnal Manajemen Indonesia, 19(2), 107-122. https://journals.telkomuniversity.ac.id/ijm
Mason, A. N., Narcum, J., & Mason, K. (2021). Social media marketing gains importance after Covid-19. Cogent Business & Management, 8(1), 1870797. https://doi.org/10.1080/23311975.2020.1870797
Mensouri, D., Azmani, A., & Azmani, M. (2022). K-Means Customers Clustering by their RFMT and Score Satisfaction Analysis. International Journal of Advanced Computer Science and Applications13(6). https://doi.org/10.14569/IJACSA.2022.0130658
Mohammadzadeh, M., Hoseini, Z. Z., & Derafshi, H. (2017). A data mining approach for modeling churn behavior via RFM model in specialized clinics Case study: A public sector hospital in Tehran. Procedia computer science, 120(2017), 23-30. https://doi.org/10.1016/j.procs.2017.11.206
Monazam Ebrahimpour, S., & Omidi, A. (2022). An Extended LRFMP Model for Customers Segmentation by using Two-Step SOM: A study of Aesthetic & Dermatology Center. Journal of Systems Thinking in Practice. 1(2), 56-71. https://jstinp.um.ac.ir/article_42798_7054dfd3b995b58a4163313164fb6e47.pdf
Moran, G., & Muzellec, L. (2017). eWOM credibility on social networking sites: A framework. Journal of Marketing Communications, 23(2), 149-161. https://doi.org/10.1080/13527266.2014.969756
Muchlish, M. (2023). Segmentasi Menggunakan Model LRFM dengan Algoritma K-Means pada Pelanggan Hotel (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).
Nam, H. & Kannan, P. (2020), Digital environment in global markets: cross-cultural implications for evolving customer journeys, Journal of International Marketing, 28(1), 28-47. https://doi.org/10.1177/1069031X19898767
Napawut, W., Siripipatthanakul, S., Phayaphrom, B., Siripipattanakul, S., & Limna, P. (2022). The Mediating Effect of E-WOM on the Relationship between Digital Marketing Activities and Intention to Buy via Shopee. International Journal of Behavioral Analytics2(2), 1-13. Available at SSRN: https://ssrn.com/abstract=4047441
Nuseir, M. T. (2019). The impact of electronic word of mouth (e-WOM) on the online purchase intention of consumers in the Islamic countries–a case of (UAE). Journal of Islamic Marketing. 10(3), 759-767. https://doi.org/10.1108/JIMA-03-2018-0059
Nuseir, M. T., El Refae, G. A., Aljumah, A., Alshurideh, M., Urabi, S., & Kurdi, B. A. (2023). Digital Marketing Strategies and the Impact on Customer Experience: A Systematic Review. The Effect of Information Technology on Business and Marketing Intelligence Systems, 21-44. https://doi.org/10.1007/978-3-031-12382-5_2
Orsingher, C., & Wirtz, J. (2018). Psychological drivers of referral reward program effectiveness. Journal of Services Marketing. 32(3), 256–268. https://doi.org/10.1108/JSM-07-2017-0247
Perisic, A., & Pahor, M. (2021). RFM-LIR feature framework for churn prediction in the mobile games market. IEEE Transactions on Games. 14(2)-126-137.  https://doi.org/10.1109/TG.2021.3067114
Rodríguez-Torrico, P., San José Cabezudo, R., San-Martín, S., & Trabold Apadula, L. (2023). Let it flow: the role of seamlessness and the optimal experience on consumer word of mouth in omnichannel marketing. Journal of Research in Interactive Marketing, 17(1), 1-18. https://doi.org/10.1108/JRIM-06-2021-0154
Roelens, I., Baecke, P., & Benoit, D. F. (2016). Identifying influencers in a social network: The value of real referral data. Decision Support Systems, 91 (2016), 25-36. https://doi.org/10.1016/j.dss.2016.07.005
Rosário, A., & Raimundo, R. (2021). Consumer marketing strategy and E-commerce in the last decade: a literature review. Journal of theoretical and applied electronic commerce research, 16(7), 3003-3024. https://doi.org/10.3390/jtaer16070164
Sciandra, M. R. (2019). Money Talks, But Will Consumers Listen? Referral Reward Programs and the Likelihood of Recommendation Acceptance. Journal of Marketing Theory and Practice, 27(1), 67–82. https://doi.org/10.1080/10696679.2018.1534213
Schmitt, P., Skiera, B., & Van den Bulte, C. (2011). Referral programs and customer value. Journal of marketing, 75(1), 46-59. https://doi.org/10.1509/jm.75.1.46
Shih, Y.-Y., & Liu, D.-R. (2008). Product recommendation approaches: Collaborative filtering via customer lifetime value and customer demands. Expert Systems with Applications, 35(1–2), 350–360. https://doi.org/10.1016/j.eswa.2007.07.055
Sivathanu, B., & Pillai, R. (2014). Use of social media to attract and engage new customer base. International journal of management, 5(8), 35-46.
Song, C., Wang, T. and Hu, M.Y. (2019), Referral reward programs with scarcity messages on bank credit card adoption, International Journal of Bank Marketing, 37 (2), 531-544. https://doi.org/10.1108/IJBM-12-2017-0260
Sperkova, L., & Feuerlicht, G. (2016). Application of CRISP-DM to Voice of Customer and BI integration. Progress in Intelligent Computing and Applications 5(1), 7-14.
Sperková, L., Vencovsky, F., & Bruckner, T. (2015). How to measure quality of service using unstructured data analysis: A general method design. Journal of Systems Integration6(4), 3-17. https://doi.org/10.20470/jsi.v6i4.242
Su, B. C., Wu, L. W., Lin, H., & Lin, C. A. (2023). The Mediating Effect of Herd Behavior and Brand Attitude towards the Impact of Spokesman Credibility, Source Fit, and Online Word-of-Mouth on Purchase Intention. Sustainability, 15(1), 888. https://doi.org/10.3390/su15010888
Sultana, S. (2014). Review on the customer life time value in the context of customer relationship management. International Journal of Research in Finance & Marketing4(3), 53-63.
Tabianan, K., Velu, S., & Ravi, V. (2022). K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data. Sustainability, 14(12), 7243. https://doi.org/10.3390/su14127243
Tania, S., Listiana, E., & Afifah, N. (2023). Social Media Marketing and Word of Mouth on Product Purchase Intentions at Bibit FinTech Startup with the Mediation of Brand Awareness. Journal of Economics, Management and Trade, 29(2), 1-15. https://doi.org/10.9734/jemt/2023/v29i21075
Tavakoli, M., Molavi, M., Masoumi, V., Mobini, M., Etemad, S., & Rahmani, R. (2018). Customer segmentation and strategy development based on user behavior analysis, RFM model and data mining techniques: a case study. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE) (pp. 119-126). IEEE. https://doi.org/10.1109/ICEBE.2018.00027
Tsai, C.-F., Hu, Y.-H., Hung, C.-S., & Hsu, Y.-F. (2013). A comparative study of hybrid machine learning techniques for customer lifetime value prediction. Kybernetes, 42(3), 357-370. https://doi.org/10.1108/03684921311323626
Van Burg, J. M. (2020). Customer Segmentation Using RFM Analysis. BACHELOR THESISI, Delft University of Netherlands. Available at: http://resolver.tudelft.nl/uuid:50c70e92-0d0f-4c85-8bfc-9aba11706df8
Wang, Q., Mao, Y., Zhu, J., & Zhang, X. (2018). Receiver responses to referral reward programs in social networks. Electronic Commerce Research, 18(3), 563–585. https://doi.org/10.1007/s10660-017-9271-x
Wibowo, A., Chen, S. C., Wiangin, U., Ma, Y., & Ruangkanjanases, A. (2020). Customer behavior as an outcome of social media marketing: The role of social media marketing activity and customer experience. Sustainability, 13(1), 189.
Wirtz, J., Tang, C., & Georgi, D. (2019). Successful referral behavior in referral reward programs. Journal of Service Management. 30(1), 48–74. https://doi.org/10.1108/JOSM-04-2018-0111
Warsito, B., & Santoso, R. (2023). Implementasi K-Medoids Dan Model Weighted-Length Recency Frequency Monetary (W-Lrfm) Untuk Segmentasi Pelanggan Dilengkapi Gui R. Jurnal Gaussian, 11(3), 429-438. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/37085#:~:text=http%3A//creativecommons.org/licenses/by%2Dnc%2Dsa/4.0.
Xevelonakis, E. (2015). Social influence and customer referral value. Athens Journal of Business and Economics, 2(1), 7-16.Zhao, Y., Wang, L., Tang, H., & Zhang, Y. (2020). Electronic word-of-mouth and consumer purchase intentions in social e-commerce. Electronic Commerce Research and Applications41, 100980. https://doi.org/10.1016/j.elerap.2020.100980
Yuan, B., & Peluso, A. M. (2021). The Influence of Word-Of-Mouth Referral on Consumers’ Purchase Intention: Experimental Evidence from WeChat. Sustainability, 13(2), 645-663. https://doi.org/10.3390/su13020645
Zhou, J., Wei, J., & Xu, B. (2021). Customer segmentation by web content mining. Journal of Retailing and Consumer Services, 61(2021), 102588-102599. https://doi.org/10.1016/j.jretconser.2021.102588