Aigbefo, Q. A., Blount, Y., & Marrone, M. (2020). The influence of hardiness and habit on security behaviour intention. Behaviour & Information Technology, 1-20. https://doi.org/10.1080/0144929x.2020.1856928
Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Society, 55, 100-110. https://doi.org/10.1016/j.techsoc.2018.06.007
Al-Debei, M. M., Akroush, M. N., & Ashouri, M. I. (2015). Consumer attitudes towards online shopping: The effects of trust, perceived benefits, and perceived web quality. Internet Research, 25(5), 707–733.
Amoroso, D., & Lim, R. (2017). The mediating effects of habit on continuance intention. International Journal of Information Management, 37(6), 693-702. https://doi.org/10.1016/j.ijinfomgt.2017.05.003
Ashfaq, M., Yun, J., Waheed, A., Khan, M. S., & Farrukh, M. (2019). Customers’ expectation, satisfaction, and repurchase intention of used products online: Empirical evidence from China. SAGE Open, 9(2), 215824401984621. https://doi.org/10.1177/2158244019846212
Avkiran, N. K. (2018). Rise of the partial least squares structural equation modeling: An application in banking. Partial Least Squares Structural Equation Modeling, 1-29. https://doi.org/10.1007/978-3-319-71691-6_1
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351. https://doi.org/10.2307/3250921
Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229. https://doi.org/10.2307/25148634
Brown, S.A & Venkatesh,V (2005). Model of adoption of technology in households: A baseline model test and extension incorporating household life cycle. MIS Quarterly, 29(3), 399. https://doi.org/10.2307/25148690
Camilleri, M. A., & Falzon, L. (2020). Understanding motivations to use online streaming services: Integrating the technology acceptance model (TAM) and the uses and gratifications theory (UGT). Spanish Journal of Marketing - ESIC, 25(2), 217-238. https://doi.org/10.1108/sjme-04-2020-0074
Chakraborty, D., Siddiqui, M., Siddiqui, A., Paul, J., Dash, G., & Mas, F. D. (2023). Watching is valuable: Consumer views – Content consumption on OTT platforms. Journal of Retailing and Consumer Services, 70, 103148. https://doi.org/10.1016/j.jretconser.2022.103148
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. https://doi.org/10.4324/9780203771587
Daneji, A. A., Ayub, A. F. M., & Khambari, M. N. M. (2019). The effects of perceived usefulness, confirmation and satisfaction on continuance intention in using massive open online course (MOOC). Knowledge Management & E-Learning, 11(2), 201–214. https://doi.org/10.34105/j.kmel.2019.11.010
Dasgupta, S., & Grover, P. (2019). Understanding adoption factors of over-the-top video services among millennial consumers. International Journal of Computer Engineering & Technology, 10(1). https://doi.org/10.34218/ijcet.10.1.2019.008
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
Eren, B. A. (2021). Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. International Journal of Bank Marketing, 39(2), 294-311. https://doi.org/10.1108/ijbm-02-2020-0056
Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.
Franque, F. B., Oliveira, T., & Tam, C. (2021). Understanding the factors of mobile payment continuance intention: Empirical test in an African context. Heliyon, 7(8), e07807. https://doi.org/10.1016/j.heliyon.2021.e07807
Friederich, F., Palau-Saumell, R., Matute, J., & Meyer, J.-H. (2023). Digital natives and streaming TV platforms: an integrated perspective to explain continuance usage of over-the-top services. Online Information Review, https://doi.org/10.1108/OIR-03-2022-0133
Gefen, D., Straub, D., & Boudreau, M. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4. https://doi.org/10.17705/1cais.00407
Golalizadeh, F., Ranjbarian, B., & Ansari, A. (2023). An Evaluation and Analysis of Perceived Online Service Quality Dimensions Impacts on Online Purchasing Behavior of Luxury Cosmetic Products by Women. Iranian Journal of Management Studies. https://doi.org/10.22059/IJMS.2023.337578.674908
Gupta, S. (2023). The impact of E-wom on users’ attitudes toward over-the-top (OTT) streaming video content and its subscription intention. – Young Indians perspective. International Journal of Professional Business Review, 8(2), e01046.
https://doi.org/10.26668/businessreview/2023.v8i2.1046
Gupta, G., & Singharia, K. (2021). Consumption of OTT media streaming in COVID-19 lockdown: Insights from PLS analysis. Vision: The Journal of Business Perspective, 25(1), 36-46. https://doi.org/10.1177/0972262921989118
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Planning, 46(1-2), 1-12. https://doi.org/10.1016/j.lrp.2013.01.001
Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management & Data Systems, 117(3), 442-458. https://doi.org/10.1108/imds-04-2016-0130
Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W.,
Jr., D J, K., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on ronkko and evermann (2013). Organizational Research Methods, 17(2), 182–209. https://doi.org/10.1177/1094428114526928
Hsiao, C., Chang, J., & Tang, K. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics Informatics, 33, 342-355. https://doi.org/10.1016/j.tele.2015.08.014
Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424–453. https://doi.org/10.1037/1082-989X.3.4.424
Hu, T., Stafford, T. F., Kettinger, W. J., Zhang, X. “., & Dai, H. (2017). Formation and effect of social media usage habit. Journal of Computer Information Systems, 58(4), 334-343. https://doi.org/10.1080/08874417.2016.1261378
IBEF. (2022, February 23). Indian OTT market to touch $13-15 bn in 10 years: Deloitte. Retrieved from https://www.ibef.org/news/indian-ott-market-to-touch-13-15-bn-in-10-years-deloitte
Indrawati. (2014). The use of modified unified theory of acceptance and use of technology to predict the behavioural intention toward website. Applied Mechanics and Materials, 568-570, 1586-1592. https://doi.org/10.4028/www.scientific.net/amm.568-570.1586
Indrawati, & Haryoto, K.S. (2015). The use of modified theory of acceptance and use of technology 2 to predict prospective users' intention in adopting TV Streaming.
Jha, L. (2020, October 22). India is the world’s fastest growing OTT market: PwC report. Retrieved from https://www.livemint.com/news/india/india-is-the-world-s-fastest-growing-ott-market-pwc-report-11603355739242.html
Joo, Y. J., Park, S., & Shin, E. K. (2017). Students' expectation, satisfaction, and continuance intention to use digital textbooks. Computers in Human Behavior, 69, 83-90. https://doi.org/10.1016/j.chb.2016.12.025
Kim, B. (2011). Understanding antecedents of continuance intention in social-networking services. Cyberpsychology, Behavior, and Social Networking, 14(4), 199-205. https://doi.org/10.1089/cyber.2010.0009
Koul, S., Ambekar, S. S., & Hudnurkar, M. (2020). Determination and ranking of factors that are important in selecting an over-the-top video platform service among millennial consumers. International Journal of Innovation Science, 13(1), 53-66. https://doi.org/10.1108/ijis-09-2020-0174
Keržič, D., Alex, J. K., Pamela Balbontín Alvarado, R., Bezerra, D. D., Cheraghi, M., Dobrowolska, B., … Aristovnik, A. (2021). Academic student satisfaction and perceived performance in the E-lEarning environment during the COVID-19 pandemic: Evidence across ten countries. PLOS ONE, 16(10), e0258807. https://doi.org/10.1371/journal.pone.0258807
Kwon, Y., Park, J., & Son, J. (2020). Accurately or accidentally? Recommendation agent and search experience in over-the-top (OTT) services. Internet Research, 31(2), 562-586. https://doi.org/10.1108/intr-03-2020-0127
Lankton, N. K., Wilson, E. V., & Mao, E. (2010). Antecedents and determinants of information technology habit. Information & Management, 47(5-6), 300-307. https://doi.org/10.1016/j.im.2010.06.004
Le, T. T., Pham, H. M., Chu, N. H., Nguyen, D. K., & Ngo, H. M. (2020). Factors affecting users’ continuance intention towards mobile banking In Vietnam. American Journal of Multidisciplinary Research & Development (AJMRD), 2(4), 42-51.
Lee, J. S., & Cho, J. (2021). Determinants of continuance intention for over-the-top services. Social Behavior and Personality: An International Journal, 49(12), 1–13. https://doi.org/10.2224/sbp.10566
Limayem, M., & Hirt, S. (2003). Force of habit and information systems usage: Theory and initial validation. Journal of the Association for Information Systems, 4(1), 65-97. https://doi.org/10.17705/1jais.00030
Malewar, S., & Bajaj, S. (2020). Acceptance of OTT video streaming platforms in India during covid -19: Extending utaut2 with content availability. Journal of Content Community and Communication, 12, 89-106. https://doi.org/10.31620/jccc.12.20/09
Morgeson, F. V. (2012). Expectations, disconfirmation, and citizen satisfaction with the US federal government: Testing and expanding the model. Journal of Public Administration Research and Theory, 23(2), 289-305. https://doi.org/10.1093/jopart/mus012
Müller, R., Van der Merwe, M., & Bevan-Dye, A. L. (2020). Influence of perceived usefulness and ease of use on Generation Y students’ attitude towards streaming services in South Africa. Polish Journal of Management Studies, 21(1), 224-235. https://doi.org/10.17512/pjms.2020.21.1.17
Nagaraj, S., Singh, S., & Yasa, V. R. (2021). Factors affecting consumers’ willingness to subscribe to over-the-top (OTT) video streaming services in India. Technology in Society, 65, 101534. https://doi.org/10.1016/j.techsoc.2021.101534
Nguyen, P. M. B., Do, Y. T., & Wu, W. Y. (2021). Technology Acceptance Model and Factors Affecting Acceptance of Social Media: An Empirical Study in Vietnam. The Journal of Asian Finance, Economics and Business, 8(6), 1091–1099. https://doi.org/10.13106/JAFEB.2021.VOL8.NO6.1091
Ngah, A. H., Abdul Rashid, R., Ariffin, N. A., Ibrahim, F., Abu Osman, N. A., Kamalrulzaman, N. I., Harun, N. O. (2021). Fostering students’ attitude towards online learning: The mediation effect of satisfaction and perceived performance. Proceedings of International Conference on Emerging Technologies and Intelligent Systems, 290-302. https://doi.org/10.1007/978-3-030-82616-1_26
Nikou, S. A. (2021). Web-based videoconferencing in online teaching during the COVID-19 pandemic: University students’ perspectives. 2021 International Conference on Advanced Learning Technologies (ICALT). https://doi.org/10.1109/icalt52272.2021.00137
Oliver, R. L. (1993). Cognitive, affective, and attribute bases of the satisfaction response. Journal of Consumer Research, 20(3), 418. https://doi.org/10.1086/209358
Pereira, R., & Tam, C. (2021). Impact of enjoyment on the usage continuance intention of video-on-demand services. Information & Management, 58(7), 103501. https://doi.org/10.1016/j.im.2021.103501
Periaiya, S., & Nandukrishna, A. T. (2023). What drives user stickiness and satisfaction in OTT video streaming platforms? A mixed-method exploration. International Journal of Human–Computer Interaction, 1-17.
https://doi.org/10.1080/10447318.2022.2160224
Philip, A.V, & Zakkariya, K.A. (2023). Exploring the dimensions of cognitive absorption in a hedonic systems context. Iranian Journal of Management Studies, 16, 515–534. https://doi.org/10.22059/IJMS.2022.326000.674610
Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75. https://doi.org/10.1016/j.omega.2005.12.002
Ringle, C., Da Silva, D., & Bido, D. (2015). Structural equation modeling with the SmartPLS. Bido, D., da Silva, D., & Ringle, C.(2014). Structural Equation Modeling with the Smartpls. Brazilian Journal of Marketing, 13(2). https://doi.org/10.5585/remark.v13i2.2717
Rouibah, K., Al-Qirim, N., Hwang, Y., & Pouri, S. G. (2021). The determinants of eWOM in social commerce. Journal of Global Information Management, 29(3), 75-102. https://doi.org/10.4018/jgim.2021050104
Rubenking, B., & Bracken, C. C. (2021). Binge watching and serial viewing: Comparing new media viewing habits in 2015 and 2020. Addictive Behaviors Reports, 14, 100356. https://doi.org/10.1016/j.abrep.2021.100356
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach. John Wiley & Sons.
Sharma, K., & Lulandala, E. E. (2023). OTT platforms resilience to COVID-19 – a study of business strategies and consumer media consumption in India. International Journal of Organizational Analysis, 31(1), 63-90.
https://doi.org/10.1108/ijoa-06-2021-2816
Singh, S., Singh, N., Kalinić, Z., & Liébana-Cabanillas, F. J. (2021). Assessing determinants influencing continued use of live streaming services: An extended perceived value theory of streaming addiction. Expert Systems with Applications, 168, 114241. https://doi.org/10.1016/j.eswa.2020.114241
Spreng, R. A., MacKenzie, S. B., & Olshavsky, R. W. (1996). A reexamination of the determinants of consumer satisfaction. Journal of Marketing, 60(3), 15. https://doi.org/10.2307/1251839
Sun, W., Liu, H., & Wen, N. (2022). What motivates people to continuously engage in online task-oriented check-ins? The role of perceived social presence. Aslib Journal of Information Management, 75(2), 390–406. https://doi.org/10.1108/ajim-05-2022-0252
Sundaravel, E., & Elangovan, N. (2020). Emergence and future of over-the-top (OTT) video services in India: An Analytical research. International Journal of Business Management and Social Research, 8(2), 489-499. https://doi.org/10.18801/ijbmsr.080220.50
Thong, J. Y., Hong, S., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810. https://doi.org/10.1016/j.ijhcs.2006.05.001
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Zhang, W., Zhang, W., Wang, C., & Daim, T. U. (2021). What drives continuance intention of disruptive technological innovation? The case of e-business microcredit in China. Technology Analysis & Strategic Management, 34(8), 905–918. https://doi.org/10.1080/09537325.2021.1932798
Zolotov, M. N., Oliveira, T., & Casteleyn, S. (2018). Continued intention to use online participatory budgeting. Proceedings of the 11th International Conference on Theory too Practice of Electronic Governance. https://doi.org/10.1145/3209415.3209461