Evaluating the Impact of E-Learning Effectiveness Factors and Self-Regulated Learning on University of Tehran Students, with Personality Traits as Mediators

Document Type : Research Paper

Authors

1 Department of Financial Engineering, Faculty of Management, University of Tehran, Tehran, Iran

2 Department of Leadership and Human Capital, Faculty of Management, University of Tehran, Tehran, Iran

10.22059/ijms.2024.368803.676385

Abstract

This quantitative research study explores the relationship between factors that impact e-learning effectiveness and self-regulated learning, focusing on the mediating role of personality traits. Three standardized questionnaires collected data on e-learning effectiveness, self-regulated learning, and personality traits. The study included 351 students from University of Tehran. The sample size was determined using SPSS Sample Power software, and convenience sampling was employed. The data analysis step examined relationships between variables and generalized results to the target population, using SPSS Amos structural equation modeling software. The research utilized Pearson correlation coefficient tests, structural correlation models, multiple regression models, and mediation models to test hypotheses. The results indicated a positive relationship between factors influencing e-learning effectiveness and self-regulated learning, with the mediating roles of personality traits discussed in detail.

Keywords

Main Subjects


Barnard-Brak, L., Paton, V. O., & Lan, W. Y. (2010). Profiles in self-regulated learning in the online learning environment. International Review of Research in Open and Distributed Learning, 11(1), 61-80. https://doi.org/10.19173/irrodl.v11i1.769
Abouzeid, E., Fouad, S., Wasfy, N. F., Alkhadragy, R., Hefny, M., & Kamal, D. (2021). Influence of personality traits and learning styles on undergraduate medical students’ academic achievement. Advances in Medical Education and Practice, 12. 769-777. https://doi.org/10.2147/AMEP.S314644
Al-Fraihat, D., Joy, M., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior102, 67-86. https://doi.org/10.1016/j.chb.2019.08.004
Ambarwati, S. (2021). Implementasi Supervisi Akademik Dan Kesehatan Sekolah Pada Masa Pandemi Covid-19 Di SDN Bener 01 Tahun Pelajaran 2020/2021. Florea: Jurnal Biologi Dan Pembelajarannya8(1), 29. https://doi.org/10.25273/florea.v8i1.9270
Bandura, A. (1982a). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122. https://doi.org/10.1037//0003-066x.37.2.122
Bandura, A. (1982b). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122 https://doi.org/10.1037/0003-066X.37.2.122
Barros, A., Simão, A. M. V., & Frisson, L. (2021). Self-regulation of learning and conscientiousness in Portuguese and Brazilian samples. Current Psychology. 41(11):1-8 https://doi.org/10.1007/s12144-020-01232-y
Bruso, J., Stefaniak, J., & Bol, L. (2020). An examination of personality traits as a predictor of the use of self-regulated learning strategies and considerations for online instruction. Educational Technology Research and Development68(5), 2659-2683. https://doi.org/10.1007/s11423-020-09797-y
Carter Jr, R. A., Rice, M., Yang, S., &and Jackson, H. A. (2020). , "Self-regulated learning in online learning environments: sStrategies for remote learning.", Information and Learning Sciences, 121 (5/6), 321-329. https://doi.org/10.1108/ILS-04-2020-0114
Cataudella, S., Carta, S., Mascia, M. L., Masala, C., Petretto, D. R., & Penna, M. P. (2021). Psychological aspects of students with learning disabilities in e-environments: A mini review and future research directions. Frontiers in Psychology11, 611818. https://doi.org/10.3389/fpsyg.2020.611818
Costa , P.T., Jr & McCrae, R. R. (1992). The NEO-PI-R professional manual.. Odessa, Florida: Psychological Assessment Resourcers. 179–198. https://doi.org/10.4135/9781849200479.n9
Dai, X. (2024). A study on mindful agency's influence on college students' engagement with online teaching: The mediating roles of e-learning self-efficacy and self-regulation. Acta Psychologica243, 104146. https://doi.org/10.1016/j.actpsy.2024.104146
Daulae, T. H. (2020). Pemanfaatan kawasan-kawasan teknologi pendidikan dalam meningkatkan hasil belajar. Darul Ilmi: Jurnal Ilmu Kependidikan dan Keislaman7(2), 442-456. http://dx.doi.org/10.24952/di.v7i2.2245
DePietro, D. M., Santucci, S. E., Harrison, N. E., Kiefer, R. M., Trerotola, S. O., Sudheendra, D., & Shamimi-Noori, S. (2021). Medical student education during the COVID-19 pandemic: iInitial experiences implementing a virtual interventional radiology elective course. Academic Radiology28(1), 128-135. https://doi.org/10.1016/j.acra.2020.10.005
Doo, M. Y., Bonk, C. J., & Heo, H. (2023). Examinations of the relationships between self-efficacy, self-regulation, teaching, cognitive presences, and learning engagement during COVID-19. Educational technology research and development71(2), 481-504. https://doi.org/10.1007/s11423-023-10187-3
ElSayad, G. (2024). Drivers of undergraduate students’ learning perceptions in the blended learning environment: The mediation role of metacognitive self-regulation. Education and Information Technologies,  29:15737–15760. https://doi.org/10.1007/s10639-024-12466-
Elzainy, A., El Sadik, A., & Al Abdulmonem, W. (2020). Experience of e-learning and online assessment during the COVID-19 pandemic at the College of Medicine, Qassim University. Journal of Taibah University Medical Sciences15(6), 456-462. https://doi.org/10.1016/j.jtumed.2020.09.005
Fida, H. (2020). Peran Self Regulated Learning Di Era Pandemi Covid-19. Jurnal Ilmiah Fakultas Keguruan Dan Ilmu Pendidikan, 6(2).
Fisher, R., Perényi, A., & Birdthistle, N. (2021). The positive relationship between flipped and blended learning and student engagement, performance and satisfaction. Active Learning in Higher Education22(2), 97-113. https://doi.org/10.1177/1469787418801702
Giannakos, M. N., Mikalef, P., & Pappas, I. O. (2022). Systematic literature review of e-learning capabilities to enhance organizational learning. Information Systems Frontiers, 24(4), 1-17. https:/doi.org// 10.1007/s10796-020-10097-2link.springer.com/article/10.1007/s10796-020-10097-2
Gope, P., Gheraibia, Y., Kabir, S., & Sikdar, B. (2020). A secure IoT-based modern healthcare system with fault-tolerant decision making process. IEEE Journal of Biomedical and Health Informatics25(3), 862-873. https://doi.org/10.1109/JBHI.2020.3007488
Hernández-Ramos, J. P., Martínez-Abad, F., & Sánchez-Prieto, J. C. (2021). El empleo de videotutoriales en la era post COVID19: vValoración e influencia en la identidad docente del futuro profesional. Revista de Educación a Distancia (RED)21(65). https://doi.org/10.6018/red.449321
Hertel, S., & Karlen, Y. (2021). Implicit theories of self‐regulated learning: Interplay with students’ achievement goals, learning strategies, and metacognition. British Journal of Educational Psychology91(3), 972-996. https://doi.org/10.1111/bjep.12402
Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q., & Zhang, B. (2020). More diverse means better: Multimodal deep learning meets remote-sensing imagery classification. IEEE Transactions on Geoscience and Remote Sensing59(5), 4340-4354. https://doi.org/10.48550/arXiv.2008.05457
ISNA News Agency (2021). Student satisfaction with virtual education. isna.ir/xdJ44V
Jin, S. H., Im, K., Yoo, M., Roll, I., & Seo, K. (2023). Supporting students’ self-regulated learning in online learning using artificial intelligence applications. International Journal of Educational Technology in Higher Education20(1), 37.. http://dx.doi.org/10.1186/s41239-023-00406-5
Khan, Z. R., Sivasubramaniam, S., Anand, P., & Hysaj, A. (2021). ‘E’-Thinking teaching and assessment to uphold academic integrity: lessons learned from emergency distance learning. International Journal for Educational Integrity17, 1-27. https://doi.org/10.1007/s40979-021-00079-5
Kuleshov, M. V., Stein, D. J., Clarke, D. J., Kropiwnicki, E., Jagodnik, K. M., Bartal, A., Evangelista, J. E., Hom, J., Cheng, M., Bailey, A., Zhou, A., Ferguson, L. B., Lachmann, A.,... & Ma'ayan, A. (2020). The COVID-19 drug and gene set library. Patterns1(6), 1-10. https://doi.org/10.1016/j.patter.2020.100090
Lai, S., Sun, B., Wu, F., & Xiao, R. (2020). Automatic Personality Identification Using Students’ Online Learning Behavior. IEEE Transactions on Learning Technologies, 13(1). 26–37. https://doi.org/10.1109/TLT.2019.2924223
Ahmadi, H., Nematollahi, H., & Asadolahidehkordi, E. (2022). Steps of implementation and realization of participatory governance in higher education. Management Studies in Development and Evolution31(105), 103-135. doi: 10.22054/jmsd.2022.65492.4075
Maldonado-Mahauad, J., Pérez-Sanagustín, M., Kizilcec, R. F., Morales, N., & Munoz-Gama, J. (2018). Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in massive open online courses. Computers in Human Behavior80, 179-196. https://doi.org/10.1016/j.chb.2017.11.011
Mishra, L., Gupta, T., & Shree, A. (2020). Online teaching-learning in higher education during lockdown period of COVID-19 pandemic. International journal of educational research open1, 100012. https://doi.org/10.1016/j.ijedro.2020.100012
Mitra, N. K., Aung, H. H., Kumari, M., Perera, J., Sivakumar, A., Singh, A., & Nadarajah, V. D. (2021). Improving the learning process in anatomy practical sessions of chiropractic program using e-learning tool. Translational Research in Anatomy23(4), 100100. https://doi.org/10.1016/j.tria.2020.100100
Nikou, S., & Maslov, I. (2021). An analysis of students' perspectives on e-learning participation–the case of COVID-19 pandemic. The International Journal of Information and Learning Technology38(3), 299-315. https://doi.org/10.1108/IJILT-12-2020-0220
Omari, R. A. (2020). The Effect of COVID19 on the academic achievement of accounting department students at the university of Jordan, Aqaba branch. An experimental study. Systematic Reviews in Pharmacy11(11). :762-766. https://doi.org/10.31838/SRP.2020.11.109
Oztekin, A., Kong, Z. J., & Uysal, O. (2010). UseLearn: A novel checklist and usability evaluation method for eLearning systems by criticality metric analysis. International Journal of Industrial Ergonomics40(4), https://doi.org/455-469. 10.1016/j.ergon.2010.04.001
Ehlers, U. D., Pawlowski, J. M., Ehlers, U. D., & Pawlowski, J. M. (2006). Quality in European e-learning: An introduction. Handbook on quality and standardisation in e-learning, 1-13. https://doi.org/ 10.1007/3-540-32788-6
Pelikan, E. R., Lüftenegger, M., Holzer, J., Korlat, S., Spiel, C., & Schober, B. (2021). Learning during COVID-19: tThe role of self-regulated learning, motivation, and procrastination for perceived competence. Zeitschrift für Erziehungswissenschaft24(2), 393-418. https://doi.org/ 10.1007/s11618-021-01002-x
Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of educational psychology, 82(1), 33–40. https://doi.org/10.1037/0022-0663.82.1.33
Rania Al Omari. (2020). The effect of covid19 on the academic achievement of accounting department students at the university of jordan, aqaba branch an experimental study. Systematic Reviews in Pharmacy, 11(11), 762-766.https://doi.org/10.31838/srp.2020.11.109
Ray, A., Bala, P. K., & Dwivedi, Y. K. (2021). Exploring values affecting e-Learning adoption from the user-generated-content: A consumption-value-theory perspective. Journal of Strategic Marketing29(5), 430-452. https://doi.org/10.1080/0965254X.2020.1749875
Shi, J., Miskin, N., Dabiri, B. E., DeSimone, A. K., Schaefer, P. M., Matalon, S. A., Uyeda, J. W, Guenette, J. P.,... & Gaviola, G. C. (2021). Beyond business as usual: radiology residency educational response to the COVID-2019 pandemic. Clinical imaging69, 349-353. https://doi.org/10.1016/j.clinimag.2020.10.010
Shrivastava, S. R., & Shrivastava, P. S. (2020). Assessing the impact of e-learning in medical education. International Journal of Academic Medicine6(1), 40-42. https://doi.org/10.1097/00001888-200603000-00002
Suppan, M., Stuby, L., Carrera, E., Cottet, P., Koka, A., Assal, F., Savoldelli, G. L., ... & Suppan, L. (2021). Asynchronous distance learning of the national institutes of health stroke scale during the COVID-19 pandemic (e-learning vs video): rRandomized controlled trial. Journal of medical Internet research23(1), e23594. https://doi.org/10.2196/23594
Tsekea, S., & Chigwada, J. P. (2021). COVID-19: sStrategies for positioning the university library in support of e-learning. Digital Library Perspectives37(1), 54-64. https://doi.org/10.1108/DLP-06-2020-0058
Ulfatun, T., Septiyanti, F., & Lesmana, A. G. (2021). University students’ online learning self-efficacy and self-regulated learning during the COVID-19 pandemic. International Journal of Information and Education Technology11(12), 597-602. https://doi.org/10.18178/ijiet.2021.11.12.1570
Utami, W. B., Kuswandi, D., Soepriyanto, Y., & Aulia, F. (2023). Development of online web learning with ethnomatematics content on self regulated learning. JTP-Jurnal Teknologi Pendidikan25(1), 62-75. http://dx.doi.org/10.21009/jtp.v25i1.31705
Valverde-Berrocoso, J., Garrido-Arroyo, M. D. C., Burgos-Videla, C., & Morales-Cevallos, M. B. (2020). Trends in educational research about e-learning: A systematic literature review (2009–2018). Sustainability12(12), 5153. https://doi.org/10.3390/su12125153
Van Overwalle, F., Manto, M., Cattaneo, Z., Clausi, S., Ferrari, C., Gabrieli, J. D. E., Guell, X., Heleven, E., Lupo, M., Ma, Q., Michelutti, M., Olivito, G., Pu, M., Rice, L. C., Schmahmann, J. D., Siciliano, L., Sokolov, A. A., Stoodley, C. J., van Dun, K., … Leggio, M. (2020). Consensus Paper: Cerebellum and Social Cognition. Cerebellum, 19(6), 833-868.. https://doi.org/10.1007/s12311-020-01155-1
Vetrugno, G., Laurenti, P., Franceschi, F., Foti, F., D’Ambrosio, F., Cicconi, M., la Milia, D. I., Di Pumpo, M., Carini, E., Pascucci, D., Boccia, S., Pastorino, R., Damiani, G., De-Giorgio, F., Oliva, A., Nicolotti, N., Cambieri, A., Ghisellini, R., Murri, R., … Zuccalà, G. (2021). Gemelli decision tree Algorithm to Predict the need for home monitoring or hospitalization of confirmed and unconfirmed COVID-19 patients (GAP-Covid19): Preliminary results from a retrospective cohort study. European Review for Medical and Pharmacological Sciences, 25(6). 2785-2794.https://doi.org/10.26355/eurrev_202103_25440
Viberg, O., Khalil, M., & Baars, M. (2020, March). Self-regulated learning and learning analytics in online learning environments: A review of empirical research. In Proceedings of the tenth international conference on learning analytics & knowledge, 524-533. https://doi.org/10.1145/3375462.3375483
Vladova, G., Ullrich, A., Bender, B., & Gronau, N. (2021). Students’ acceptance of technology-mediated teaching–how it was influenced during the COVID-19 pandemic in 2020: Aa study from Germany. Frontiers in Psychology12, 636086. https://doi.org/10.3389/fpsyg.2021.636086
Wan, Z., Compeau, D., & Haggerty, N. (2012). The effects of self-regulated learning processes on e-learning outcomes in organizational settings. Journal of Management Information Systems29(1), 307-340. https://doi.org/10.2753/MIS0742-1222290109
Wang, Z. Y., Zhang, L. J., Liu, Y. H., Jiang, W. X., Tang, S. L., & Liu, X. Y. (2021). Process evaluation of E-learning in continuing medical education: evidence from the China-Gates Foundation Tuberculosis Control Program. Infectious Diseases of Poverty, 10(1). https://doi.org/10.1186/s40249-021-00810-x
Wani, M. A., Agarwal, N., & Bours, P. (2020). Impact of unreliable content on social media users during COVID-19 and stance detection system. Electronics10(1), 5. https://doi.org/10.3390/electronics10010005
Wat, K. K. Y., Banks, P. B., & McArthur, C. (2020). Linking animal personality to problem-solving performance in urban common brushtail possums. Animal Behaviour, 162(4):35-45. https://doi.org/10.1016/j.anbehav.2020.01.013
Xu, Z., Zhao, Y., Zhang, B., Liew, J., & Kogut, A. (2023). A meta-analysis of the efficacy of self-regulated learning interventions on academic achievement in online and blended environments in K-12 and higher education. Behaviour & Information Technology42(16), 2911-2931. https://doi.org/10.1080/0144929X.2022.2151935
Yang, H. S., Hou, Y., Zhang, H., Chadburn, A., Westblade, L. F., Fedeli, R., Steel, P. A. D., Racine-Brzostek, S. E., Velu, P., Sepulveda, J. L., Satlin, M. J., Cushing, M. M., Kaushal, R., Zhao, Z., & Wang, F. (2021). Machine learning highlights downtrending of COVID-19 patients with a distinct laboratory profile. Health data science,  7574903. https://doi.org/10.34133/2021/7574903
Yue, Z., Gao, F., Xiong, Q., Wang, J., Huang, T., Yang, E., & Zhou, H. (2021). A Novel Semi-Supervised Convolutional Neural Network Method for Synthetic Aperture Radar Image Recognition. Cognitive Computation, 13(4). https://doi.org/10.1007/s12559-019-09639-x
Zimmerman, B. J. (2008). Investigating self-regulation and motivation: Historical background, methodological developments, and future prospects. American educational research journal45(1), 166-183. http://dx.doi.org/10.3102/0002831207312909
Zimmerman, B. J., & Bandura, A. (1994). Impact of self-regulatory influences on writing course attainment. American educational research journal31(4), 845-862. https://doi.org/10.2307/1163397