On modeling door-to-door parcel delivery services in Iran

Document Type : Research Paper

Authors

1 Faculty of Management, University of Tehran, Tehran, Iran

2 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 LCFC, Arts et Métier Paris Tech, Metz, France

4 Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Parcel delivery is a complex logistic service, as it serves many small or medium-sized customers who may send or receive parcels. Modeling such delivery system needs to integrate two different research areas of hub location and vehicle routing. As it totally depends on the network and the linkage of the nodes, in this paper, some door-to-door service providers are taken into account to provide suitable information for modeling parcel deliveries of sparse and wide countries. Since the proposed mixed-integer programming model is NP-hard, a new multi-steps solution method based on a simulated annealing algorithm and local search is presented. The results of the proposed model and the solution method are evaluated based on some small test problems. The performance of the solution method is illustrated by solving a real case with all capital cities of 31 provinces in Iran.
 

Keywords

Main Subjects


Bruns, A., Klose, A., & Stähly, P. (2000). Restructuring of Swiss parcel delivery services. OR Spectrum, 22(2), 285-302.
Campbell, J. F. (1994). Integer programming formulations of discrete hub location problems. European Journal of Operational Research, 72(2), 387-405.
Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of optimization theory and applications, 45(1), 41-51.
Čupić, A., & Teodorović, D. (2014). A multi‐objective approach to the parcel express service delivery problem. Journal of Advanced Transportation, 48(7), 701-720.
Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location science, 4(3), 139-154.
Estrada-Romeu, M., & Robusté, F. (2015). Stopover and hub-and-spoke shipment strategies in less-than-truckload carriers. Transportation Research Part E: Logistics and Transportation Review, 76, 108-121.
Kara, B. Y., & Tansel, B. Ç. (2001). The latest arrival hub location problem. Management Science, 47(10), 1408-1420.
Karaoglan, I., Altiparmak, F., Kara, I., & Dengiz, B. (2012). The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach. Omega, 40(4), 465-477.
Krikpatrick, S., Gelatt Jr. C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.
Laporte, G. (1988). In: Golden GI. Assad A.A., editors. Location-routing problems. In vehicle routing: Methods and studies (pp. 163-198). Amsterdam: North-Holland.
Lopes, R. B., Ferreira, C., Santos, B. S., & Barreto, S. (2013). A taxonomical analysis, current methods and objectives on location‐routing problems. International Transactions in Operational Research, 20(6), 795-822.
Min, H., Jayaraman, V., & Srivastava, R. (1998). Combined location-routing problems: A synthesis and future research directions. European Journal of Operational Research, 108(1), 1-15.
Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649-672.
O'kelly, M. E. (1986a). The location of interacting hub facilities. Transportation Science, 20(2), 92-106.
O'Kelly, M. E. (1986b). Activity levels at hub facilities in interacting networks. Geographical Analysis, 18(4), 343-356.
Ross, R.J. (1989). Taguchi techniques for quality engineering. New York: McGraw-Hill.
Salhi, S., & Rand, G. K. (1989). The effect of ignoring routes when locating depots. European Journal of Operational Research, 39(2), 150-156.
Tan, P. Z., & Kara, B. Y. (2007). A hub covering model for cargo delivery systems. Networks, 49(1), 28-39.
Wasner, M., & Zäpfel, G. (2004). An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. International Journal of Production Economics, 90(3), 403-419.
Wolsey, L.A. (1998). Integer programming (Vol. 42). New York: Wiley.
Yaman, H., Kara, B. Y., & Tansel, B. Ç. (2007). The latest arrival hub location problem for cargo delivery systems with stopovers. Transportation Research Part B: Methodological, 41(8), 906-919.
Zanjirani-Farahani, R., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4), 1096-1109.