An integrated simulation-DEA approach to multi-criteria ranking of scenarios for execution of operations in a construction project

Document Type : Technical paper


Department of Industrial Engineering, Sharif University of Technology, Tehran, Iran


The purpose of this study is to examine different scenarios for implementing operations in the pre-construction phase of a project, based on several competing criteria with different importance levels in order to achieve a more efficient execution plan. This paper presents a new framework that integrates discrete event simulation (DES) and data envelopment analysis (DEA) to rank different scenarios for execution of construction operations. First, a simulation model is developed. Then, the model is run several times for each scenario to arrive at a quantitative evaluation of all competing criteria. Finally, DEA is used to compare the efficiency of different scenarios. To the best of the researchers’ knowledge, this is the first study that employs an integrated approach based on computer simulation and DEA to concurrently incorporate several inputs and outputs with different importance levels for ranking scenarios of complex construction operations. Project managers can use this framework for assessment of different scenarios of conducting operations and choose the best one that reduces indices such as resource cost and waste in time, while at the same time enhances other criteria such as resource utilization and labor productivity.


Main Subjects

Article Title [فارسی]

رتبه‌بندی چندمعیارۀ سناریوهای اجرای عملیات ساخت با استفاده از رویکرد یکپارچة شبیه‌سازی و تحلیل پوششی داده‌ها

Authors [فارسی]

  • مجتبی ترابی
  • هاشم محلوجی
دانشکدة مهندسی صنایع، دانشگاه صنعتی شریف، تهران، ایران
Abstract [فارسی]

هدف از این تحقیق بررسی سناریوهای مختلف اجرای عملیات ساخت پیش از شروع عملیات با هدف دستیابی به برنامة اجرایی مناسب‌تر است، به‌طوری که این رتبه‌بندی بر اساس چندین معیار با سطوح اهمیت متفاوت باشد. این مقاله چارچوبی مرکب از شبیه‌سازی گسستة پیشامد و تحلیل پوششی داده‌ها در رتبه‌بندی سناریوهای اجرای عملیات ساخت ارائه داده است. در این چارچوب ابتدا مدل شبیه‌سازی از سیستم عملیات توسعه داده می‌شود. سپس، مدل شبیه‌سازی به تعداد مناسب برای دستیابی به مقادیر معیارهای ارزیابی عملیات اجرا می‌شود. در نهایت، مدل تحلیل پوششی داده‌ها کارایی نسبی سناریوهای مختلف را با توجه به مقادیر به‌دست آمده برای معیارهای ارزیابی محاسبه می‌کند. بر اساس مرور پیشینه، این تحقیق برای اولین بار از رویکرد یکپارچه بر اساس شبیه‌سازی رایانه‌ای و تحلیل پوششی داده‌ها برای در نظر گرفتن چندین معیار هم‌زمان با سطوح اهمیت و متفاوت در رتبه‌بندی سناریوها استفاده می‌کند. مدیران پروژه از این چارچوب برای ارزیابی سناریوهای مختلف اجرای عملیات و انتخاب سناریوهای مناسب‌تر می‌توانند استفاده کنند، به‌طوری که در سناریوهای مناسب‌تر، شاخص‌هایی مانند هزینة منابع و اتلاف زمان مقدار کمتر و به‌طور هم‌زمان شاخص‌هایی مانند بهره‌وری کارگران و ضریب اشتغال منابع مقدار بیشتری داشته باشد. 

Keywords [فارسی]

  • پایدارسازی جداره
  • تحلیل پوششی داده‌ها
  • رتبه‌بندی چندمعیاره
  • شبیه‌سازی
  • عملیات ساخت
Abourizk, S., Halpin, D., Mohamed, Y., & Hermann, U. (2011). Research in modeling and simulation for improving construction engineering operations. Journal of Construction Engineering and Management, 137(10), 843–852.
Abudayyeh, O., Dibert-DeYoung, A., & Jaselskis, E. (2004). Analysis of trends in construction research: 1985–2002. Journal of Construction Engineering and Management, 130(3), 433–439.
Al-Refaie, A., Fouad, R. H., Li, M.-H., & Shurrab, M. (2014). Applying simulation and DEA to improve performance of emergency department in a Jordanian hospital. Simulation Modelling Practice and Theory, 41, 59–72.
Alsudairi, A. a. (2015). Simulation as a tool for assessing the economical aspects of construction processes. Procedia Engineering, 118(966), 1086–1095.
Alvanchi, A., Azimi, R., Lee, S., Abourizk, S. M., & Zubick, P. (2012). Off-Site construction planning using discrete event simulation. Jounrnal of Architectural Enginnering, 18(2), 114–122.
Aslani, N., & Zhang, J. (2014). Integration of simulation and DEA to determine the most efficient patient appointment scheduling model for a specific healthcare setting. Journal of Industrial Engineering and Management, 7(4), 785–815.
Azadeh, A., Alem, S. M., Nazari-Shirkoohi, S., & Rezaie, K. (2009). An integrated computer simulation-DEA and its extension models for vendor selection problem. International Journal of Simulation: Systems, Science and Technology, 10(3), 72–76.
Azadeh, A., Ghaderi, S. F., & Izadbakhsh, H. (2008). Integration of DEA and AHP with computer simulation for railway system improvement and optimization. Applied Mathematics and Computation, 195(2), 775–785.
Azadeh, A., Nazari, T., & Charkhand, H. (2015a). Optimisation of facility layout design problem with safety and environmental factors by stochastic DEA and simulation approach. International Journal of Production Research, 53(11), 3370–3389.
Azadeh, A., Tohidi, H., Zarrin, M., Pashapour, S., & Moghaddam, M. (2015b). An integrated algorithm for performance optimization of neurosurgical ICUs. Expert Systems with Applications, 43(January), 142-153.
Baker, R. C., & Talluri, S. (1997). A closer look at the use of data envelopment analysis for technology selection. Computers & Industrial Engineering, 32(1), 101–108.
Baniassadi, F., Alvanchi, A., & Mostafavi, A. (2015). A simulation framework for ex-ante analysis of safety. In 5th International Construction Specialty Conference. British Columbia. pp. 1–11.
Botín, J. A., Campbell, A. N., & Guzmán, R. (2015). A discrete-event simulation tool for real-time management of pre-production development fleets in a block-caving project. International Journal of Mining, Reclamation and Environment, 29(5), 347–356.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.
Dev, N. K., Shankar, R., & Debnath, R. M. (2014). Supply chain efficiency: a simulation cum DEA approach. The International Journal of Advanced Manufacturing Technology, 72(9-12), 1537–1549.
Greasley, A. (2005). Using DEA and simulation in guiding operating units to improved performance. Journal of the Operational Research Society, 56(6), 727–731.
Hassan, M. M., & Gruber, S. (2008). Application of discrete-event simulation to study the paving operation of asphalt concrete. Construction Innovation: Information, Process, Management, 8(1), 7–22.
Hassan, N. M., Al Maazmi, T., Al Hadhrami, A., & Al Hosani, M. (2016). Discrete event simulation: a vital tool for a concurrent life cycle design. Construction Innovation, 16(1), 67–80.
Hobbs, G. (2008). Construction Resources and Waste Roadmap 2008. Prepared by Gilli Hobbs, BRE, for Defra’s Business Resource Efficiency and Waste Programme (BREW).
Horta, I. M., Camanho, A. S., Johnes, J., & Johnes, G. (2013). Performance trends in the construction industry worldwide: An overview of the turn of the century. Journal of Productivity Analysis, 39(1), 89–99.
Kaveh Khalili-Damghani, Mohammad Taghavifard, Laya Olfat & Kamran Feizi (2011). A hybrid approach based on fuzzy DEA and simulation to measure the efficiency of agility in supply chain : real case of dairy industry. International Journal of Management Science and Engineering Management, 6(3), 163-172.
Khoramshahi, F. (2007). Waste Management Practices in Construction Sites. In International Project Management Conference, pp. 1–13.
Labban, R., Abourizk, S., Haddad, Z., & Elsersy, A. (2013). A discrete event simulation model of asphalt paving operations. In Winter Simulation Conference, pp. 3215–3224.
Markovits-Somogyi, R. (2011). Ranking efficient and inefficient decision making. International Journal for Traffic and Transport Engineering, 1(4), 245–256.
Martinez, J. C. (2010). Methodology for conducting discrete-event simulation studies in construction engineering and management. Journal of Construction Engineering and Management, 136(1), 3–16.
McMullen, P. R., & Frazier, G. V. (1998). Using simulation and data envelopment analysis to compare assembly line balancing solutions. Journal of Productivity Analysis, 11(2), 149–168.
Min, H., & Park, B. (2008). A hybrid data envelopment analysis and simulation methodology for measuring capacity utilization and throughput efficiency of container terminals. International Journal of Logistics Systems and Management, 4(6), 650–672.
Montaser, A., Ibrahim, M., & Moselhi, O. (2014). Adaptive forcasting in erthmoving operation using DES and site captured data. Procedia Engineering, 85, 377–384.
Moradi, S. (2015). A hybrid SD–DES simulation approach to model construction projects. Construction Innovation, 15(1), 66–83.
Najafi, A. L. I., & Tiong, R. (2015). Simulation as a tool for productivity modeling of precast concrete installation. Current World Environment, 10(1), 1–7.
Ndekugri, I., Lansley, P., & Abourizk, S. (2010). Role of simulation in construction engineering and management. Journal of Construction Engineering and Management, 136(10), 1140–1153.
Pradhananga, N., & Teizer, J. (2015). Cell-based construction site simulation model for earthmoving operations using real-time equipment location data. Visualization in Engineering, 3(12), 1–16.
Rani, R. M., Ismail, W. R., & Ishak, I. (2014). An integrated simulation and data envelopment analysis in improving SME food production system. World Journal of Modelling and Simulation, 10(2), 136–147.
Saghafi, M. D., & Teshnizi, Z. A. H. (2011). Building deconstruction and material recovery in Iran: An analysis of major determinants. Procedia Engineering, 21, 853–863.
Sameie, H., & Arvan, M. (2015). A simulation-based Data Envelopment Analysis (DEA) model to evaluate wind plants locations. Decision Science Letters, 4(2), 165–180.
Sheikhalishahi, M. (2014). An integrated simulation-data envelopment analysis approach for maintenance activities planning. International Journal of Computer Integrated Manufacturing, 27(9), 858–868.
Weng, S.-J., Tsai, B.-S., Wang, L.-M., Chang, C.-Y., Tunghai, D. G., & Gotcher, D. (2011). Using simulation and data envelopment analysis in optimal healthcare efficiency allocations. In Proceedings of the Winter Simulation Conference, pp. 1295–1305.
Williams, I. D., Curran, T., den Boer, E., Pertl, A., Lock, D., Kent, A., & Wilding, P. (2014). Resource efficiency networks in the construction of new buildings. Proceedings of the ICE - Waste and Resource Management, 167(4), 139–152.
Wimmer, J., Horenburg, T., Günthner, W. A., Ji, Y., & Borrmann, A. (2012). Planning of Earthwork Processes Using Discrete Event Simulation. Use Cases of Discrete Event Simulation, 27–43.
Yates, J. K. (2014). Productivity improvement for construction and engineering implementing programs that save money and time. ASCE press.