A Simulation-Based Optimization Model for Scheduling New Product Development Projects in Research and Development Centers

Document Type: Research Paper

Authors

1 School of Industrial Engineering, College of Engineering, Alborz Campus, University of Tehran, Tehran, Iran

2 Faculty of Entrepreneurship, University of Tehran, Tehran, Iran

3 School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

a simulation-based optimization approach for the purpose of finding a near-optimal answer can be efficient and effective. In the present paper, first, the mathematical model for the project activity scheduling problem has been presented with a job shop approach. Then, using the Arena 14 software, the simulation model has been designed. Consequently, a numerical example has been solved via running the model and using variance analysis in order to find a near-optimal answer in terms of earliness profits subtracted by tardiness costs, with the purpose of choosing the best prioritization rule for activities in research teams. In the numerical example, the results reveal that the FCFS method has the highest value of the objective function, and possesses a significant difference from the other methods. After determining the best method, different scenarios regarding the number of resources in the workstations which possess long waiting times have been analyzed, whereby the results show that doubling the number of resources in these workstations can improve the objective function towards a positive output. In addition, the results from the present paper reveal that, contrary to other optimization methods, there is no need for an exact mathematical model in simulation and one can achieve optimal results via a conceptual mathematical model. Therefore, this issue can facilitate the solution of optimization problems, provided that they can be changed to a simulation model. 

Keywords

Main Subjects


Article Title [Persian]

ارایه مدل بهینه‌سازی مبتنی بر‌شبیه‌سازی جهت مدیریت و زمان‌بندی پروژه‌های توسعه محصول جدید در مراکز تحقیق و توسعه

Authors [Persian]

  • صادق شهبازی 1
  • سیدمجتبی سجادی 2
  • فریبرز جولای 3
1 دانشکده مهندسی صنایع،پردیس البرز، دانشگاه تهران، تهران، ایران
2 دانشکده کارآفرینی، دانشگاه تهران، تهران، ایران
3 دانشکده مهندسی صنایع،پردیس دانشکده های فنی، دانشگاه تهران، تهران
Abstract [Persian]

رویکرد بهینه­سازی مبتنی بر شبیه­سازی به منظور یافتن جواب نزدیک به بهینه می­تواند کارا و اثر بخش باشد. در مقاله حاضر، ابتدا مدل ریاضی برای مساله زمان­بندی فعالیت پروژه با رویکرد کارگاهی ارائه شده­است. سپس، با استفاده از نرم افزار Arena 14، مدل شبیه­سازی طراحی شده­است. در ادامه، یک مثال عددی از طریق اجرای مدل و با استفاده از تحلیل واریانس به منظور یافتن پاسخ نزدیک به بهینه از نظر سود زودکرد منهای هزینه دیرکرد با هدف انتخاب بهترین قانون اولویت­بندی برای فعالیت در گروه­های پژوهشی حل شده­است. در مثال عددی، نتایج نشان می­دهد که روش FCFS  دارای بیشترین مقدار تابع هدف است و دارای تفاوت معنی­داری با سایر روش­ها است. پس از استخراج بهترین روش، سناریوهای مختلف مربوط به تعداد منابع در ایستگاه­های کاری که دارای زمان انتظار طولانی می­باشند ، مورد تحلیل قرار گرفته که نتایج نشان می­دهد دو برابر نمودن تعداد منابع در این ایستگاه­ها می­تواند موجب بهبود تابع هدف و مثبت نمودن آن گردد. علاوه بر این، نتایج حاصل از این مقاله نشان می­دهد که بر خلاف روش­های بهینه­سازی دیگر، در روش شبیه­سازی نیازی به مدل­سازی دقیق ریاضی نمی­باشد و می­توان با استفاده از یک مدل ریاضی مفهومی، نتایج بهینه را به دست آورد.

Keywords [Persian]

  • بهینه‌سازی مبتنی بر شبیه‌سازی
  • توسعه پروژه جدید
  • بهره‌وری
  • زمان‌بندی
Bhattacharyya, R., Kumar, P., & Kar, S. (2011). Fuzzy R&D portfolio selection of interdependent projects. Computers & Mathematics with Applications, 62(10), 3857-3870.

Carazo, A. F., Gómez, T., Molina, J., Hernández-Díaz, A. G., Guerrero, F. M., & Caballero, R. (2010). Solving a comprehensive model for multiobjective project portfolio selection. Computers & Operations Research, 37(4), 630-639.

Carson, Y., & Maria, A. (1997). Simulation optimization: Methods and applications. Proceedings from the 29th Conference on Winter Simulation, 118-126.

Hashim, S. A. M. (2017). Simulation for reducing energy consumption of multi core low voltage power cable manufacturing system. Journal on Technical and Vocational Education, 1(2).

Maleki, A., Sajadi, S. M., & Rezaee, B. (2014). Explanation and improvement performance indicators of the emergency system using discrete event simulation (Case study: Arak Imam Khomeini Hospital). Journal of Health Information Managment, 11(1), 4-16.

Pinedo, M. (2012). Scheduling theory, algorithms, and systems (3rd ed.). US: Springer.

Rane, A. B., Sunnapwar, V. K., Chari, N. R., Sharma, M. R., & Jorapur, V. (2017). Improving performance of lock assembly line using lean and simulation approach. International Journal of Business Performance Management, 18(1), 101-124.

Sajadi, S. M., Esfahani, M. M. S., & Sörensen, K. (2011). Production control in a failure-prone manufacturing network using discrete event simulation and automated response surface methodology. The International Journal of Advanced Manufacturing Technology, 53(1-4), 35-46.

Sajadi, S. M., Tavan, F., & Heidary Dahooie, J. (2015). Business processes design of small and medium enterprises of perishable items in order to determination of optimum production policy with simulation approach. The Modares Journal of Management Research in Iran, 19(3), 7-35.

Salimifard, K., & Ansari, M. (2016). Modeling and simulation of urban traffic network using colored petri nets. Industrial Management, 8(3), 381-404. Doi:10.22059/imj.2016.61712

Sharma, S. K., Suraj, B., & Routroy, S. (2017). Positioning of inventory in supply chain using simulation modeling. The IUP Journal of Supply Chain Management, 13(2), 20-32.

Shannon, R., & Johannes, J. D. (1976). Systems simulation: the art and science. IEEE Transactions on Systems, Man, and Cybernetics, 6(10), 723-724.

Teles, J., Lopes, R. B., & Ramos, A. L. (2017). A simulation-based analysis of a cork transformation system. In M. Amorim, C. Ferreira, M. Vieira Junior, & C. Prado (Eds.), Engineering systems and networks: The way ahead for industrial engineering and operations management (pp. 3-11). Cham: Springer International Publishing.

Tofighian, A. A., & Naderi, B. (2015). Modeling and solving the project selection and scheduling. Computers & Industrial Engineering, 83, 30-38.

Zareei, M., & Hassan-Pour, H. A. (2015). A multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project. Iranian Journal of Management Studies, 8(4), 653-685.  

Zhang, W.-G., Mei, Q., Lu, Q., & Xiao, W.-L. (2015). Evaluating methods of investment project and optimizing models of portfolio selection in fuzzy uncertainty. Computers & Industrial Engineering, 61(3), 721-728.