Abad, P. L. (1988). Determining optimal selling price and the lot size when the supplier offers all-unit quantity discounts. Decision Sciences, 3(19), 622-634.
Bera ,U. K., Maiti, M. K., & Maiti, M. (2012). Inventory model with fuzzy lead-time and dynamic demand over finite time horizon using a multi-objective genetic algorithm. Computers and Mathematics with Applications, 64(6), 1822-1838.
De-los-Cobos-Silva, S. G., Terceño-Gómez, A., Gutiérrez-Andrade, M. A., Rincón-García, E. A., Lara-Velázquez, P., Aguilar-Cornejo, M., & Aguilar-Cornejo, M. (2013). Particle swarm optimization: An alternative for parameter estimation in regression. Fuzzy Economic Review, 18(2), 19-32.
Driankov, D., Hellendoorn, H., & Reinfrank, M. (1996). An introduction to fuzzy control (2nd ed.). London, UK: Springer-Verlag.
Dye, C., & Hsieh, T. (2010). A particle swarm optimization for solving joint pricing and lot-sizing problem with fluctuating demand and unit purchasing cost. Computers and Mathematics with Applications, 60(7), 1895-1907.
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 39-43.
Esmaeili, M. (2009). Optimal selling price, marketing expenditure and lot size under general demand function. International Journal of Advanced Manufacturing Technology, 45(1),191-198.
Feng, L., Chan, Y., & Cárdenas-Barrón, L. E. (2017). Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date. International Journal of Production Economics, 185, 11-20.
Ghasemy Yaghin, R., & Fatemi Ghomi, S. M. T. (2012). A hybrid fuzzy multiple objective approach to lot-sizing, pricing, and marketing planning model. In A. Meier & L. Donzé (Eds.), Fuzzy methods for customer relationship management and marketing: applications and classifications. USA: IGI Global, 271-289.
Ghasemy Yaghin, R. (2018). Integrated multi-site aggregate production-pricing planning in a two-echelon supply chain with multiple demand classes. Applied Mathematical Modelling, 53, 276-295.
Ghasemy Yaghin, R., Fatemi Ghomi, S. M. T., Torabi, S. A. (2015). A hybrid credibility-based fuzzy multiple objective optimisation to differential pricing and inventory policies with arbitrage consideration. International Journal of Systems Science, 46(14), 2628-2639.
Huang, H., Xu, S., & Chiang, C. (2015). Optimal fuzzy controller design using an evolutionary strategy-based particle swarm optimization for redundant wheeled robots. International Journal of Fuzzy Systems, 17(3), 390-398.
Inuiguchi, M., & Ramik, J. (2000). Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems, 111, 3-28.
Kim, D., & Lee, W. J. (1998). Optimal joint pricing and lot sizing with fixed and variable capacity. European Journal of Operational Research, 109(1), 212-227.
Lee, W. J. (1993). Determining order quantity and selling price by geometric programming optimal solution, bounds, and sensitivity. Decision Sciences, 24(1),76-87.
Lenscold, J. D. (2003). Marketing ROI: The path to campaign, customer, and, corporate profitability. USA: McGraw-Hill.
Li, J., Min, K. J., Otake, T., & Voorhis, T. M. (2008). Inventory and investment in setup and quality operations under return on investment maximization. European Journal of Operational Research, 185(2), 593–605.
Liu, B., & Iwamura, K. B. (1998). Chance constraint programming with fuzzy parameters. Fuzzy Sets and Systems, 94(2), 27-237.
Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10(4), 445-450.
Lopez, J., Lanzarini, L., & Bariviera, F. A. (2012). Variable population MOPSO applied to medical visits. Fuzzy Economic Review, 17(1), 3-14.
Maity, K. (2011). Possibility and necessity representations of fuzzy inequality and its application to two warehouse production-inventory problem. Applied Mathematical Modelling, 35(3), 1252-1263.
Mandal, S., Maity, A. K., Maity, K., Mondal, S., & Maiti, M. (2011). Multi-item multi-period optimal production problem with variable preparation time in fuzzy stochastic environment. Applied Mathematical Modelling, 35(9), 4341-4353.
Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). New York, NY: John Wiley and Sons.
Otake, T., & Min, K. J. (2001). Inventory and investment in quality improvement under return on investment maximization. Computers and Operations Research. 28(10), 113-124.
Otake, T., Min, K. J., & Chen, C. (1999). Inventory and investment in setup operations under return on investment maximization. Computers and Operations Research, 26, 883-899.
Phillips, R. L. (2005). Pricing and revenue optimization. Stanford, US: Stanford University Press.
Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1(1), 33-57.
Porn R, Harjunkoski, I., & Westerlund T. (1999). Convexification of different classes of non-convex MINLP problems. Computer and Chemical Engineering, 23(3), 439-448.
Rosenberg, D. (1991). Optimal price-inventory decisions profit vs ROII. IIE Transactions, 23(1), 17-22.
Sadjadi, S. J., Ghazanfari, M., & Yousefli, A. (2010). Fuzzy pricing and marketing planning model: A possibilistic geometric programming approach. Expert Systems with Applications, 37(4), 3392-3397.
Schroeder, R. G., & Krishnan, R. (1976). Return on investment as a criterion for inventory model. Decision Sciences, 7(4), 697-704.
Sen, A. and Zhang, A. (1999). The newsboy problem with multiple demand classes. IIE Transactions, 31(5), 431-444.
Tersine, R. J. (1994). Principles of inventory and materials management (4th ed.). NJ, USA: Prentice Hall PTR.
Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214.
Wang, J., Hsieh, S., & Hsu, P. (2012). Advanced sales and operations planning framework in a company supply chain. International Journal of Computer Integrated Manufacturing, 25(3), 248-262.
Wee, H., Lo, C., & Hsu, P. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a fuzzy environment. European Journal of Operational Research, 197(2), 620-631.
Zhang, M., & Bell, P. C. (2007). The effect of market segmentation with demand leakage between market segments on a firm’s price and inventory decisions. European Journal of Operational Research, 182(2), 738-754.
Zhang, M., Bell, P., Cai, G., & Chen, X. (2010). Optimal fences and joint price and inventory decisions in distinct markets with demand leakage. European Journal of Operational Research, 204(3), 589-596.
Zhao, J., Tang, W., Zhao, R., & Wei, J. (2012). Pricing decisions for substitutable products with a common retailer in fuzzy environments. European Journal of Operational Research, 216(2), 409-419.
Zhou, C., Zhao, R., & Tang, W. (2008). Two-echelon supply chain games in a fuzzy environment. Computers & Industrial Engineering, 55(2), 390-405.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.