Amelioration of Verdegay̕s approach for fuzzy linear programs with stochastic parameters

Document Type : Special issue on ‎ Operations Research: ICIORS 2017, Babolsar, Iran‎


Department of Mathematics, University of Mazandaran, Babolsar, Iran


This article examines a new approach which solves Linear Programming (LP) problems with stochastic parameters as a generalized model of the fuzzy mathematical model analyzed by Verdegay. An expectation model is provided for solving the problem. A multi-parametric programming is applied to access to a solution with different desired degrees as well as problem constraints. Additionally, we present a numerical example to demonstrate the state and method efficiency.


Main Subjects

Article Title [فارسی]

بهبود روش وردگای برای مسایل برنامه ریزی خطی فازی با پارامترهای تصادفی

Authors [فارسی]

  • سید هادی ناصری
  • سلیم باوندی
دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران
Abstract [فارسی]

هدف از این مقاله، پیشنهاد یک رویکرد جدید برای حل مسایل برنامه ریزی خطی با پارامترهای تصادفی بعنوان تعمیمی از مدل ریاضی فازی است که اولین بار توسط وردگای مطرح شد. یک مدل میانگین برای حل این مساله ارایه شده است. ما یک برنامه ریزی چند پارامتری را برای بدست آوردن یک جواب با درجات رضایت متفاوت در محدودیت ها مختلف مساله اتخاذ می کنیم. همچنین یک مثال عددی برای نمایش کارایی روش مطرح شده است.

Keywords [فارسی]

  • تصمیم‌گیری فازی
  • روش وردگای
  • برنامه‌ریزی خطی تصادفی
  • روش میانگین
  • برنامه‌ریزی چند پارمتری

Attari, H., & Nasseri, S. H. (2014). new concepts of feasibility and efficiency of solutions in fuzzy mathematical programming problems. Fuzzy Information and Engineering, 6(2), 203-221.

Ben Abdelaziz, F., & Masri, H. (2005). Stochastic programming with fuzzy linear partial information on probability distribution. European Journal of Operational Research, 162(3), 619-629.
Cadenas, J. M., & Verdegay, J. L. (2000). Using ranking functions in multi-objective fuzzy linear programming. Fuzzy Sets and Systems, 111(1), 47-53.
Casella, G., & Berger, R. L. (2001). Statistical inference (2nd ed.). Pacific Grove: Duxbury Press.
Fiacco, A. V. (1983). Introduction to sensitivity and stability analysis in nonlinear programming. New York, NY: Academic Press.
Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and random processes. Oxford University Press.
Hop, N. V. (2007a). Fuzzy stochastic goal programming Problems. European Journal of Operational Research, 176(1), 77-86.
Hop, N. V. (2007b). Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. Information Sciences, 177, 1977-1991.  
Hop, N. V. (2007c). Solving linear programming problems under fuzziness and randomness environment using attainment values. Information Sciences, 177, 2971-2984.
Iskander, M. G. (2003). Using different dominance criteria in stochastic fuzzy linear multi-objective programming: A case of fuzzy weighted objective function. Mathematical and Computer Modeling, 37(1-2), 167-176.
Iskander, M. G. (2004a). A fuzzy weighted additive approach for stochastic fuzzy goal programming. Applied Mathematics and Computation, 154(2), 543-553.
Iskander, M. G. (2004b). A possibility programming approach for stochastic fuzzy multi-objective linear fractional programs, Computers and Mathematics with Applications, 48(10), 1603-1609.
Iskander, M. G. (2005). A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied Mathematics Letters. 18(4), 395-399.
Luhandjula, M. K. (2006). Fuzzy stochastic linear programming: Survey and future research directions. European Journal of Operational Research, 174(3), 1353-1367.
Mohan, C., & Nguyen, H. T. (2001). An interactive satisficing method for solving multi-objective mixed fuzzy-stochastic programming problems. Fuzzy Sets and Systems, 117(1), 61-79.
Nasseri, S. H., Ardil, E., Yazdani A., & Zaefarian, R. (2005). Simplex method for solving linear programming problem with fuzzy number. World Academy of Science, Engineering and Technology10, 284-288.
Nasseri, S. H., & Bavandi, S. (2017). A suggested approach for stochastic interval-valued linear fractional programming problem.  International Journal of Applied Operational Research, 13, 87-95.
Rommelfanger, H. (2007). A general concept for solving linear multi-criteria programming problems with crisp, fuzzy or stochastic values. Fuzzy Sets and Systems, 158(17), 1892-1904.
Verdegay, J. L. (1982). Fuzzy mathematical programming. Fuzzy Information and Decision Processes, 231, 237.
Zhong[r1] , O., Yue, Z., & Guangyuan, W. (1994). On fuzzy random linear programming. Fuzzy Sets and Systems, 65(1), 31- 49.
Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55.
Zimmermann, H. J. (1983). Fuzzy mathematical programming. Computers and Operations Research. 10(4) 291-298.