Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110-122.
Amuthan, R. (2014).
Financial Derivatives. Himalaya
[A1] Publishing House.
Anyaeche, C. O., & Ighravwe, D. E. (2013). Predicting performance measures using linear regression and neural network: A comparison. African Journal of Engineering Research, 1(3), 84-89.
Aragon, G. O., & Li, L. (2019). The use of credit default swaps by bond mutual funds: Liquidity provision and counterparty risk. Journal of Financial Economics, 131(1), 168-185.
Blaskowitz, O., & Herwartz, H. (2009). Adaptive forecasting of the EURIBOR swap term structure. Journal of Forecasting, 28(7), 575-594.
Chau, F., Han, C., & Shi, S. (2018). Dynamics and determinants of credit risk discovery: Evidence from CDS and stock markets. International Review of Financial Analysis, 55, 156-169.
Fahimifard, S. M., Mohaddes, S. A., Mohammadi, H., & Keshtkar, R. (2012). Application of NNARX to agriculture sector value added forecasting: A case of Irans agriculture sector. African Journal of Agricultural Research, 7(27), 3918-3924.
Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neuroscience & Biobehavioral Reviews, 25(4), 355-373.
Gayen, P. K., & Jana, A. (2017). An ANFIS based improved control action for single phase utility or micro-grid connected battery energy storage system
. Journal of Cleaner Production,
164, 1034-1049.
[A2]
Gündüz, Y., & Uhrig-Homburg, M. (2011). Predicting credit default swap prices with financial and pure data-driven approaches.
Quantitative Finance, 11(12), 1709-1727.
Halagunde Gowda, G. R. (2018).
Classificatory statistical modelling on adoption of drough coping mechanisms. (Doctoral dissertation
[A3] , DEPARTMENT OF FARM ENGINEERING INSTITUTE OF AGRICULTURAL SCIENCES BANARAS HINDU UNIVERSITY VARANASI).).
Hull, J. (2009).
Options, futures and other derivatives/John C. Hull.
[A4]
Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990, June). Stock market prediction system with modular neural networks. In 1990 IJCNN international joint conference on neural networks (pp. 1-6). IEEE.
Marthinsen, J. E. (2018).
Risk takers: Uses and abuses of financial derivatives. Walter
[A5] de Gruyter GmbH & Co KG.
Meissner, G. (2009).
Credit derivatives: application, pricing, and risk management. John
[A6] Wiley & Sons.
Pang, X., Zhou, Y., Wang, P., Lin, W., & Chang, V. (2018). An innovative neural network approach for stock market prediction.
The Journal of Supercomputing, 1
[A7] -21.
Scott, K. E., & Taylor, J. B. (Eds.). (2012).
Bankruptcy Not Bailout: A Special (No. 625). Hoover Press.
[A8]
Wang, J., Fang, W., & Niu, H. (2016). Financial time series prediction using elman recurrent random neural networks. Computational intelligence and neuroscience, Volume 2016, Article ID 4742515, 14 pages.