Asasi, M. S., Ahanch, M., & Amiri, M. S. (2017, December). A Grasshopper Optimization Algorithm to solve Optimal Distrbution System Reconfiguration and Distributed Generation Placement Problem. In
2017S IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI) Dec (Vol. 22). Tehran, Iran, pp. 0659-0666…
[H1] https://doi.org/
10.1109/KBEI.2017.8324880
Ahmadi-Javid, A., & Hoseinpour, P. (2015a). A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints.
Transportation Research Part E: Logistics and Transportation Review,
82, 238-255. https://doi.org/
10.1016/j.tre.2015.06.010
Ahmadi-Javid, A., & Hoseinpour, P. (2015b). Incorporating location, inventory and price decisions into a supply chain distribution network design problem.
Computers & Operations Research,
56, 110-119. https://doi.org/
10.1016/j.cor.2014.07.014
Ahmadi-Javid, A., Amiri, E., & Meskar, M. (2018). A profit-maximization location-routing-pricing problem: A branch-and-price algorithm.
European Journal of Operational Research,
271(3), 866-881. https://doi.org/
10.1016/j.ejor.2018.02.020
Ahmadzadeh, E., & Vahdani, B. (2017). A location-inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system.
Computers & Chemical Engineering,
101, 148-166. https://doi.org/
10.1016/j.compchemeng.2017.02.027
Amiri-Aref, M., Klibi, W., & Babai, M. Z. (2018). The multi-sourcing location inventory problem with stochastic demand.
European Journal of Operational Research,
266(1), 72-87. https://doi.org/
10.1016/j.ejor.2017.09.003
Asl-Najafi, J., Zahiri, B., Bozorgi-Amiri, A., & Taheri-Moghaddam, A. (2015). A dynamic closed-loop location-inventory problem under disruption risk.
Computers & Industrial Engineering,
90, 414-428. https://doi.org/
10.1016/j.cie.2015.10.012
Chen, Q., Li, X., & Ouyang, Y. (2011). Joint inventory-location problem under the risk of probabilistic facility disruptions.
Transportation Research Part B: Methodological,
45(7), 991-1003. https://doi.org/
10.1016/j.trb.2011.04.004
Chen, X., & Hu, P. (2012). Joint pricing and inventory management with deterministic demand and costly price adjustment.
Operations Research Letters,
40(5), 385-389. https://doi.org/
10.1016/j.orl.2012.05.011
Chen, X., Zhou, S. X., & Chen, Y. (2011). Integration of inventory and pricing decisions with costly price adjustments.
Operations Research,
59(5), 1144-1158. https://doi.org/
10.1287/opre.1110.0946
Dai, Z., Aqlan, F., Zheng, X., & Gao, K. (2018). A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints.
Computers & Industrial Engineering,
119, 338-352. https://doi.org/
10.1016/j.cie.2018.04.007
Dehghani, E., Pishvaee, M. S., & Jabalameli, M. S. (2018). A hybrid Markov process-mathematical programming approach for joint location-inventory problem under supply disruptions.
RAIRO-Operations Research,
52(4), 1147-1173. https://doi.org/
10.1051/ro/2018012
Etebari, F., & Dabiri, N. (2016). A hybrid heuristic for the inventory routing problem under dynamic regional pricing.
Computers & Chemical Engineering,
95, 231-239. https://doi.org/
10.1016/j.compchemeng.2016.09.018
Fahimi, K., Seyedhosseini, S. M., & Makui, A. (2018). Dynamic competitive supply chain network design with price dependent demand and Huff utility function.
Iranian Journal of Management Studies,
11(2), 271-305. https://doi.org/
10.22059/IJMS.2018.241299.672813
Farahani, M., Shavandi, H., & Rahmani, D. (2017). A location-inventory model considering a strategy to mitigate disruption risk in supply chain by substitutable products.
Computers & Industrial Engineering,
108, 213-224. https://doi.org/
doi.org/10.1016/j.cie.2017.04.032
Farahani, R. Z., Rashidi Bajgan, H., Fahimnia, B., & Kaviani, M. (2015). Location-inventory problem in supply chains: A modelling review.
International Journal of Production Research,
53(12), 3769-3788. https://doi.org/
10.1080/00207543.2014.988889
Ghasemy Yaghin, R., Fatemi Ghomi, S. M. T., & Torabi, S. A. (2017). Incorporating return on inventory investment into joint lot-sizing and price discriminating decisions: A fuzzy chance constraint programming model.
Iranian Journal of Management Studies,
10(4), 929-959. https://doi.org/
10.22059/IJMS.2017.230829.672615
Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2015). A relax‐and‐price heuristic for the inventory‐location‐routing problem.
International Transactions in Operational Research,
22(1), 129-148. https://doi.org/
10.1111/itor.12091
Gzara, F., Nematollahi, E., & Dasci, A. (2014). Linear location-inventory models for service parts logistics network design.
Computers & Industrial Engineering,
69, 53-63. https://doi.org/
10.1016/j.cie.2013.12.014
Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain problem.
Computers & Operations Research,
101, 130-143. https://doi.org/
10.1016/j.cor.2018.09.001
Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventory-routing problem with perishable products.
Journal of Manufacturing Systems,
42, 93-103. https://doi.org/
10.1016/j.jmsy.2016.10.004
Kaya, O., & Urek, B. (2016). A mixed integer nonlinear programming model and heuristic solutions for location, inventory and pricing decisions in a closed loop supply chain.
Computers & Operations Research,
65, 93-103. https://doi.org/
10.1016/j.cor.2015.07.005
Kuhnle, A., & Lanza, G. (2019). Investigation of closed-loop supply chains with product refurbishment as integrated location-inventory problem.
Production Engineering,
13(3-4), 293-303. https://doi.org/
10.1007/s11740-019-00885-4
Li, Z., & Hai, J. (2019). A capacitated location-inventory model with demand selection.
Journal of Advanced Transportation,
2019. https://doi.org/
10.1155/2019/2143042
Nemati, Y., Madhoushi, M., & Safaei Ghadikolaei, A. (2017). Towards supply chain planning integration: Uncertainty analysis using fuzzy mathematical programming approach in a plastic forming company.
Iranian Journal of Management Studies,
10(2), 335-364. https://doi.org/
10.22059/IJMS.2017.218842.672334
Neve, A. G., Kakandikar, G. M., & Kulkarni, O. (2017). Application of grasshopper optimization algorithm for constrained and unconstrained test functions.
International Journal of Swarm Intelligence and Evolutionary Computation,
6(3), 1-7. https://doi.org/
10.4172/2090-4908.1000165
Orand, S. M., Mirzazadeh, A., Ahmadzadeh, F., & Talebloo, F. (2015). Optimization of the inflationary inventory control model under stochastic conditions with Simpson approximation: Particle swarm optimization approach.
Iranian Journal of Management Studies,
8(2), 203-220. https://doi.org/
10.22059/IJMS.2015.52631
Puga, M. S., & Tancrez, J. S. (2017). A heuristic algorithm for solving large location–inventory problems with demand uncertainty.
European Journal of Operational Research,
259(2), 413-423. https://doi.org/
10.1016/j.ejor.2016.10.037
Punyim, P., Karoonsoontawong, A., Unnikrishnan, A., & Xie, C. (2018). Tabu search heuristic for joint location-inventory problem with stochastic inventory capacity and practicality constraints.
Networks and Spatial Economics,
18(1), 51-84. https://doi.org/
10.1007/s11067-017-9357-y
Rafie-Majd, Z., Pasandideh, S. H. R., & Naderi, B. (2018). Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm.
Computers & Chemical Engineering,
109, 9-22. https://doi.org/
10.1016/j.compchemeng.2017.10.013
Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application.
Advances in Engineering Software,
105, 30-47. https://doi.org/
10.1016/j.advengsoft.2017.01.004
Saremi S., Mirjalili S., Mirjalili S., & Song Dong J. (2020). Grasshopper Optimization Algorithm: Theory, literature review, and application in hand posture estimation. In: Mirjalili S., Song Dong J., & Lewis A. (Eds.), Nature-inspired optimizers: Studies in computational intelligence, vol. 811 (pp. 107-122). Springer, Cham. https://doi.org/10.1007/978-3-030-12127-3_7
Smith, S. A., & Agrawal, N. (2017). Optimal markdown pricing and inventory allocation for retail chains with inventory dependent demand.
Manufacturing & Service Operations Management,
19(2), 290-304. https://doi.org/
10.1287/msom.2016.0609
Taleizadeh, A. A., Niaki, S. T. A., & Barzinpour, F. (2011). Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: A harmony search algorithm.
Applied Mathematics and Computation,
217(22), 9234-9253. https://doi.org/
10.1016/j.amc.2011.04.001
Tavakkoli-Moghaddam, R., Yadegari, M., & Ahmadi, G. (2018). Closed-loop supply chain inventory-location problem with spare parts in a multi-modal repair condition.
International Journal of Engineering,
31(2), 346-356. https://doi.org/
10.5829/ije.2018.31.02b.20
Vahdani, B., Soltani, M., Yazdani, M., & Mousavi, S. M. (2017). A three level joint location-inventory problem with correlated demand, shortages and periodic review system: Robust meta-heuristics.
Computers & Industrial Engineering,
109, 113-129. https://doi.org/
10.1016/j.cie.2017.04.041
Zhang, Y., Qi, M., Lin, W. H., & Miao, L. (2015). A metaheuristic approach to the reliable location routing problem under disruptions.
Transportation Research Part E: Logistics and Transportation Review,
83, 90-110. https://doi.org/
10.1016/j.tre.2015.09.001
Zhang, Y., Snyder, L. V., Qi, M., & Miao, L. (2016). A heterogeneous reliable location model with risk pooling under supply disruptions.
Transportation Research Part B: Methodological,
83, 151-178. https://doi.org/
10.1016/j.trb.2015.11.009
[H1]City, Country: Publisher