Afthanorhan, W. M., & Afthanorhan, B. W. (2013). A comparison of partial least square structural equation modeling (PLS-SEM) and covariance based structural equation modeling (CBSEM) for confirmatory factor analysis. International Journal of Engineering Science and Innovative Technology, 2(5), 198-205.
Agrebi, S., & Jallais, J. (2015). Explain the intention to use smartphones for mobile shopping. Journal of Retailing and Consumer Services, 22, 16-23.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckman (Eds.), Action control, from cognition to behaviour (pp. 11-39). Springer.
Al-Amri, R., Zakaria, N. H, Habbal, A., & Hassan, S. (2019). Cryptocurrency adoption: Current stage, opportunities, and open challenges. International Journal of Advanced Computer Research, 9(44), 293–307.
Alazab, M., Alhyari, S., Awajan, A., Abdallah, A. B. (2021). Blockchain technology in supply chain management: An empirical study of the factors affecting user adoption/acceptance.
Cluster Computing, 24, 83-101.
https://doi.org/10.1007/s10586-020-03200-4
Almarashdeh, I., Eldaw, K. E., Alsmadi, M., Alghamdi, F., Jaradat, G., Althunibat, A., Alzaqebah, M., & Mohammad, R. M. A. (2021). The adoption of bitcoins technology: The difference between perceived future expectation and intention to use bitcoins: Does social influence matter? International Journal of Electrical and Computer Engineering, 11(6), 5351-5366.
Alzahrani, S. & Daim, T. U. (2019). Evaluation of the cryptocurrency adoption decision using hierarchical decision modeling (HDM). 2019 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, pp. 1-7
Arı, E., Yılmaz, V., & Başkan, E. (2015). Seçmen oy verme davranişlarinin betimlenmesi için bir yapisal eşitlik model önerisi: Yalova ili mahalli idareler seçimi örneği [A structural equation model proposal for describing the voting behavior of the voters: An example of local administrations in Yalova]. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(3), 1-17.
Arias-Oliva M., Pelegrin-Borondo J., & Matias-Clavero G. (2019). Variables influencing cryptocurrency Use: A technology acceptance model in Spain.
Frontier Psychology, 10(475).
https://doi.org/10.3389/fpsyg.2019.00475
Barak, O. (2008). Davranışsal finans teori ve uygulama [Behavioral finance theory and practice]. Ankara: Gazi Published.
Birch, D. (2017). Before Babylon, beyond Bitcoin. London Publishing Partnership.
Böhme, R., Christin, N., Edelman, B., & Moore, T. (2015). Bitcoin: Economics, technology, and governance. Journal of Economic Perspectives, 29(2), 213–238.
Chatterjee, P., & Rose, R. L. (2012). Do payment mechanisms change the way consumers perceive products? Journal of Consumer Research, 38(6), 1129–1139. doi:10.1086/661730
Chen, L., Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: An extended technology acceptance perspective. Information & Management, 39(8), 705-719.
Cheng, S., & Terry, L. (2008). The role of the customer-seller relationship of the intention of the customer to complain: A study of Chinese restaurateurs. International Journal of Hospitality and Tourism Research, 27(4), 552-562.
Chow, Y. Y., Sugathan, S. K., Kalid, K. S., & Arshad, N. I. (15-16 March, 2019). What determines the acceptance of cryptocurrency in Malaysia? An analysis based on UTAUT2 [paper presentation]. International conference on recent advancements in engineering and technology (ICRAET-18). Siddhartha Institute of Technology & Sciences, Telangana, India.
Claian, P., Rajcaniova, M., & Kancs, D. (2016). The economics of Bitcoin price formation. Applied Economics, 48(19), 1799-1815.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results [unpublished PhD dissertation]. Massachusetts Institute of Technology.
Davis, F. D., Bagozzi, P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: Three experiments. International Journal of Human-Computer Studies, 45(1), 19- 45.
Diniz, E. H., Cernev, A. K., & Nascimento, E. (2016). Mobile social money: An exploratory study of the views of managers of community banks.
Revista de Administração, 51(3), 299–309.
Duong, C. M., Pescetto, G. M. R., & Santamaria, D. (2017). How value–glamour investors use financial information: UK evidence of investor’s confirmation bias.
The European Journal of Finance, 20(6), 524-549.
http://dx.doi.org/10.2139/ssrn.1688255
Ekşioğlu, E. (2017). Elektronik Para Kullanımının Ekonomik Etkileri (Türkiye Üzerinde Bir Uygulama) [Economic Effects of Using Electronic Money (An Application on Turkey)] [unpublished PhD Thesis]. Cumhuriyet Üniversitesi.
Engelberg, J., & Parsons, C. (2011). The causal impact of media in financial markets. The Journal of Finance, 66(1), 67-97.
Feng, W., Wang, Y., & Zhang, Z. (2018). Informed trading in the Bitcoin market. Finance Research Letters, 26, 63-70. https:// doi.org/10.1016/j.frl.2017.11.009
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Addison-Wesley Publishing.
Fitrianie, S., Horsch, C., Beun, R. J., Griffioen-Both, F., & Brinkman, W.-P. (2021). Factors affecting user’s behavioral intention and use of a mobile-phone-delivered cognitive behavioral therapy for insomnia: A small-scale UTAUT analysis. Journal of Medical Systems, 45(12), 1-18
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Frazzini, A. (2006). The disposition effect and underreaction to new. The Journal of Fınance, 11(4), 22-30.
Gamage, T. C., & Tajeddini, K. (2022). A multi-layer organizational culture framework for enhancing the financial performance in tourism and hospitality family firms. Tourism Management, 91(3), (104516),
Gamage, T. C., Tajeddini, K., & Tajeddini, O. (2022). Why Chinese travelers use WeChat to make hotel choice decisions: A uses and gratifications theory perspective. Journal of Global Scholars of Marketing Science, 32(2), 285-312.
Gerard, D. (2018). Bitcoin is less about technology than psychology. https://davidgerard.co.uk/blockchain/2018/02/02/bitcoin-is-less-about-technology-than-psychology-jungle-world-interview-original-interview-in-english/
Goswami, A., & Dutta, S. (2016). Gender differences in technology usage – A literature review. Open Journal of Business and Management, 4, 51-59.
Grable, J., & Lytton, R. H. (1999). Financial risk tolerance revisited: The development of a risk assessment instrument. Financial Services Review, 8, 163–181.
Gunawan, F. E., & Novendra, R. (2017). An analysis of Bitcoin acceptance in Indonesia. ComTech: Computer, Mathematics and Engineering Applications, 8(4), 241-247.
Gupta, S.,
Gupta, S.,
Mathew, M., &
Sama, H. R. (2020). Prioritizing intentions behind investment in cryptocurrency: A fuzzy analytical framework.
Journal of Economic Studies, ahead-of-print(ahead-of-print). doi:10.1108/jes-06-2020-0285
Gürsoy, Ş.T. Çiçeklioğlu, M., Börekçi, N., Soyer, M.T., Öcek, Z. (2008). İzmir Karşıyaka belediye çalışanlarında çevresel risk algılama düzeyi. Cumhuriyet Üniversitesi Tıp Fakültesi Dergisi, 30(1), 20-27.
Hair, J., Anderson, R., Tatham, R. and Black, W. (1998). Multivariate data analysis. 5th Edition, New Jersey: Prentice Hall.
Hair Jr, J., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research.
European Business Review,
26(2), 106-121.
https://doi.org/10.1108/EBR-10-2013-0128
Hayes, A. S. (2017). Cryptocurrency value formation: an empirical study leading to a cost of production model for valuing Bitcoin. Telematics and Informatics, 34(7), 1308–1321. https://doi. org/10.1016/j.tele.2016.05.005
Hilferding, R. (1981), Finance capital. Routledge&Kegan Paul.
Jörg, H., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines.
Industrial Management & Data Systems,
116(1), 2-20.
https://doi.org/10.1108/IMDS-09-2015-0382
Junadi, S., & Fenrianto, J. A. (2015). Model of factors influencing consumers’ intention to use e-payment system in Indonesia.
Procedia Computer Science, 59, 214–220.
Kabak A., & Çelik Z. (4-6 December, 2020). Tüketicilerin kripto para kullanim niyeti ile ilişkili faktörlerin belirlenmesine yönelik uygulamali bir araştırma [An applied research to determine the factors associated with consumers' intention to use cryptocurrencies] [paper presentation]. 6th International GAP Social Sciences Congress, Şanlıurfa, Turkey.
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model.
International Journal of Medical Informatics,
78(6), 404–416.
https://doi.org/10.1016/j.ijmedinf.2008.12.005
Kline, P. (1994). An easy guide to factor analysis. Routledge.
Kotler, P. (2000). Kotler ve Pazarlama, (Translated into Turkish by N. Muallimoğlu). İstanbul: Sistem Published.
Lansky, J. (2018). Possible state approaches to cryptocurrencies. Journal of Systems Integration, 9, 19–31.
Lapuz, J., & Griffiths, M. (2010). The role of chips in poker gambling: An empirical pilot study. Gambling Research, 22(1), 34–39.
Madhavan, A. (2000). Market microstructure: A survey. Journal of Financial Markets, 3(3), 205–258. https://traders.berkeley.edu/papers/Market%20Microstructure.pdf
Mendoza-Tello, J. C., Mora, H. M., Pujol-López, F. A., & Lytras, M. D. (2018). Social commerce as a driver to enhance trust and intention to use cryptocurrencies for electronic payments. Institute of Electrical and Electronics Engineers Access, 6, 50737-50751.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World Wide Web context. Information & Management, 38(4), 217-230.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation.
Information Systems Research, 2(3), 192–222.
Natarajan, T., Balasubramanian, S. A., & Kasilingam, D. L. (2017). Understanding the intention to use mobile shopping applications and its influence on price sensitivity. Journal of Retailing and Consumer Services, 37, 8-22.
Öksüz Karademir, C., & Kuş, O. (2020). Exploring crypto-currency ownership in the context of technology acceptance model and technology adopter categories: Coin-optimistics, observes and coin-sceptics. Ankara Üniversitesi Sosyal Bilimler Dergisi, 11(2), 43-59.
Polat, M., & Akbıyık, A. (2019). Sosyal medya ve yatirim araçlarinin değeri arasindaki ilişkinin incelenmesi: Bitcoin örneği [Examining the relationship between social media and the value of investment instruments: Bitcoin example]. Akademik İncelemeler Dergisi, 14(1), 443-462.
Popper, N. (2015). Digital gold: Bitcoin and the inside story of the misfits and millionaires trying to reinvent money. Harper.
Prelec, D. R., & Loewenstein, G. (1998). The red and the black: Mental accounting of savings and debt. Marketing Science, 17, 4–28.
Raykov, T., & Marcoulides, G. A. (2006). A first course in structural equation modeling. Lawrence Erlbaum Associates.
Rogers, E. M. (1995). Diffusion of innovations. Simon & Schuster Press.
Schaupp, L. C., & Festa, M. (2018). Cryptocurrency adoption and the road to regulation. Proceedings of the 19th Annual International Conference on Digital Government Research Governance in the Data Age - Dgo ’18. doi:10.1145/3209281.3209336
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling. Lawrence Erlbaum Associates Publishers.
Shahzad, F., Xiu, G., Wang, J., & Shahbaz, M. (2018). An empirical investigation on the adoption of cryptocurrencies among the people of mainland China.
Technology in Society, 55, 33–44.
Steinmetz, F., von Meduna, M., Ante, L., & Fiedler, I. (2021). Ownership, uses and perceptions of cryptocurrency: Results from a population survey.
Technological Forecasting and Social Change,
173(121073).
https://doi.org/10.1016/j.techfore.2021.121073
Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92.
Tajeddini, K., Gamage, T. C., Ul Hameed, W., Qumsieh-Mussalam, G., Chaijani, M. H., Rasoolimanesh, S. M., & Kallmuenzer, A. (2022). How self-gratification and social values shape revisit intention and customer loyalty of airbnb customers. International Journal of Hospitality Management, 100(3).
Tajeddini, K., & Nikdavoodi, J. N. (2014). Cosmetic buying behavior: Examining the effective factors. Journal of Global Scholars of Marketing Science, 24(4), 395-410.
Tajeddini, K., Rasoolimanesh, S. M., Gamage, T. C., & Martin, E. (2021). Exploring the visitors’ decision-making process for Airbnb and hotel accommodations using value-attitude-behavior and theory of planned behavior. International Journal of Hospitality Management, 96, 102950.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Tetlock, P. C., Saar-Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms’ fundamental. The Journal of Finance, 63(3), 1437-1467.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and research agenda on interventions. Decision Sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Management Information Systems Quarterly, 27(3), 425–478.
Veronesi, P. (1999). Stock market overreactions to bad news in good times: A rational expectations equilibrium model. Review of Financial Studies, 12(5), 975-1007.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.
Zhu, Z., Liu, Y., Cao, X., & Dong, W. (2022). Factors affecting customer intention to adopt a mobile chronic disease management service: differentiating age effect from experiential distance perspective. Journal of Organizational and End User Computing, 34(4), 1-2.