Exploring the Dimensions of Cognitive Absorption in a Hedonic Systems Context

Document Type : Research Paper


School of Management Studies, Cochin University of Science and Technology, Kalammassery, Cochin, India


The popular conceptualization of the Information Systems variable Cognitive Absorption (CA) has five dimensions- Focussed Immersion (FI), Temporal Dissociation (TD), Heightened Enjoyment (HE), Control (Con), and Curiosity (Cur). The authors address the gap in the literature on absorption and flow experience in Social Networking Sites (SNS) use by exploring the dimensions of the construct, their relationships among each other and with user beliefs, and to continued use of SNS. Data collected from a sample of 448 Indian social media users was analysed using Structural Equation Modelling. The results showed that Perceived Ease of Use of the system increases Curiosity, Control and Heightened Enjoyment for users. Curiosity and Heightened Enjoyment emerged as the strongest predictors of reuse intentions, along with Perceived Usefulness and Perceived Ease of Use. However, Focussed Immersion, Temporal Dissociation and Control were not found to influence Continuance Intentions in an SNS context. The study’s findings strengthen the understanding of hedonic system reuse intentions from an intrinsic motivational perspective. Practitioners can use the insights to design SNS to tap into the salient motivational factors and thereby enhance revisit intentions.


Main Subjects

Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665-694. https://doi.org/10.2307/3250951 
Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences30(2), 361-391.
Baker, D. S., Underwood, J., & Thakur, R. (2017). Factors contributing to cognitive absorption and grounded learning effectiveness in a competitive business marketing simulation. Marketing Education Review, 27(3), 127-140. https://doi.org/10.1080/10528008.2017.1306710
Balakrishnan, J., & Dwivedi, Y. K. (2021). Role of cognitive absorption in building user trust and experience. Psychology & Marketing, 38(4), 643-668.
Baltar, F. & Brunet, I. (2012). Social research 2.0: Virtual snowball sampling method using Facebook. Internet Research, 22(1), 57-74. https://doi.org/10.1108/10662241211199960
Barnes, S. J., Pressey, A. D., & Scornavacca, E. (2019). Mobile ubiquity: Understanding the relationship between cognitive absorption, smartphone addiction and social network services. Computers in human behavior, 90, 246-258. https://doi.org/10.1016/j.chb.2018.09.013
Bhargava, V. R., & Velasquez, M. (2021). Ethics of the attention economy: The problem of social media addiction. Business Ethics Quarterly, 31(3), 321-359.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
Brooks, S., & Longstreet, P. (2015). Social networking’s peril: Cognitive absorption, social networking usage, and depression. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 9(4), Article 5. https://doi.org/10.5817/CP2015-4-5
Chandra, S., Srivastava, S. C., & Theng, Y. L. (2012). Cognitive absorption and trust for workplace collaboration in virtual worlds: An information processing decision making perspective. Journal of the Association for Information Systems13(10), 797-835. https://doi.org/10.17705/1jais.00310 
Chang, C. C. (2013). Examining users′ intention to continue using social network games: A flow experience perspective. Telematics and Informatics, 30(4), 311-321. https://doi.org/10.1016/j.tele.2012.10.006 
Chang, Y. P., & Zhu, D. H. (2012). The role of perceived social capital and flow experience in building users’ continuance intention to social networking sites in China. Computers in Human Behavior, 28(3), 995-1001. https://doi.org/10.1016/j.chb.2012.01.001 
Cheung, C. M., Chiu, P. Y., & Lee, M. K. (2011). Online social networks: Why do students use Facebook? Computers in Human Behavior, 27(4), 1337-1343.
Cheung, C. M., Thadani, D. R., & Lee, Z. W. (2021). An integrative framework of cognitive absorption for technology use. In Information Technology in Organizations and Societies: Multidisciplinary Perspectives from AI to Technostress (pp. 111-145). Emerald Publishing Limited.
Chun, J., Lee, J., Kim, J., & Lee, S. (2020). An international systematic review of cyberbullying measurements. Computers in Human Behavior, 113(2020), Article 106485. https://doi.org/10.1016/j.chb.2020.106485
Croes, E., & Bartels, J. (2021). Young adults’ motivations for following social influencers and their relationship to identification and buying behavior. Computers in Human Behavior, 124 (2021)…, Article 106910. https://doi.org/10.1016/j.chb.2021.106910
Culbertson, S. S., Fullagar, C. J., Simmons, M. J., & Zhu, M. (2015). Contagious flow: Antecedents and consequences of optimal experience in the classroom. Journal of Management Education, 39(3), 319-349. https://doi.org/10.1177/1052562914545336 
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. Harper & Row.
Datareportal (2022). Social media statistics for India in 2022. Retrieved July 1 from 2022https://datareportal.com/reports/digital-2022-india#:~:text=Kepios%20analysis%20reveals%20that%20social,percent)%20between%202021%20and%202022.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3)…, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology22(14), 1111-1132.
Ellison, N. B., & Boyd, D. (2013). Sociality through social network sites. In W. H. Dutton (Ed), The Oxford Handbook of Internet Studies,…,pp. 151-172. Oxford University Press. DOI: 10.1093/oxfordhb/9780199589074.013.0008
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.           https://doi.org/10.1177/002224378101800104
Gamage, T. C., & Tajeddini, K. (2022). A multi-layer organizational culture framework for enhancing the financial performance in tourism and hospitality family firms. Tourism Management, 91(2022), 104516.
Gamage, T. C., Tajeddini, K., & Tajeddini, O. (2022). Why Chinese travelers use WeChat to make hotel choice decisions: A uses and gratifications theory perspective. Journal of Global Scholars of Marketing Science, 32(2), 285-312.
Gan, C., & Li, H. (2018). Understanding the effects of gratifications on the continuance intention to use WeChat in China: A perspective on uses and gratifications. Computers in Human Behavior, 78 (2018), 306-315.
Ghani, J. A., & Deshpande, S. P. (1994). Task characteristics and the experience of optimal flow in human-computer interaction. The Journal of Psychology, 128(4), 381-391.                                https://doi.org/10.1080/00223980.1994.9712742 
Ghani, J. A., Supnick, R., & Rooney, P. (1991, January). The experience of flow in computer-mediated and in face-to-face groups. ICIS 1991 Proceedings, 91(6), 229-237.
Ghasemaghaei, M. (2020) The impact of in-depth online recommendation agents on consumer disorientation and cognitive absorption perceptions. Behaviour & Information Technology, 39(4), 414-430. https://doi.org/10.1080/0144929X.2019.1598496
Griffioen, N., van Rooij, M., Lichtwarck-Aschoff, A., & Granic, I. (2020). Toward improved methods in social media research. Technology, Mind, and Behavior, 1(1). https://doi.org/10.1037/tmb0000005
Gu, J., Xu, Y. C., Xu, H., Zhang, C., & Ling, H. (2017). Privacy concerns for mobile app download: An elaboration likelihood model perspective. Decision Support Systems, 94(c), 19-28. https://doi.org/10.1016/j.dss.2016.10.002
Guinaliu-Blasco, M., Hernández-Ortega, B., & Franco, J. L. (2019). The effect of cognitive absorption on marketing learning performance. Spanish Journal of Marketing-ESIC, 23(2), 249-271.  https://doi.org/10.1108/sjme-10-2018-0048 
Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: A test of alternative models. Information Systems Journal, 19(4), 369-390. https://doi.org/10.1111/j.1365-2575.2007.00292.x 
Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective. Vol 7. Pearson.
Hoffman, D. L., & Novak, T. P. (2009). Flow online: Lessons learned and future prospects. Journal of Interactive Marketing, 23(1), 23-34.
Hsu, Y. H., Li, C. K., Li, C. M., & Liu, N. T. (2016). The effect of website quality features and cognitive absorption on social network site usage: A cross-national study. International Journal of Electronic Commerce Studies, 7(2), 156-188.
Kapoor, K. K., Tamilmani, K., Rana, N. P., Patil, P., Dwivedi, Y. K., & Nerur, S. (2018). Advances in social media research: Past, present and future. Information Systems Frontiers, 20(3), 531-558.
Karahanna, E., Xu, S. X., Xu, Y., & Zhang, N. A. (2018). The needs–affordances–features perspective for the use of social media. MIS Quarterly, 42(3), 737-756.
Kaur, P., Dhir, A., Chen, S., & Rajala, R. (2016). Flow in context: Development and validation of the flow experience instrument for social networking. Computers in Human Behavior, 59 (June 2016), 358-367.            https://doi.org/10.1016/j.chb.2016.02.039 
Kim, J., Song, J., & Jones, D. R. (2011). The cognitive selection framework for knowledge acquisition strategies in virtual communities. International Journal of Information Management, 31(2), 111-120.       https://doi.org/10.1016/j.ijinfomgt.2010.05.011 
Kwak, K. T., Choi, S. K., & Lee, B. G. (2014). SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Computers in Human Behavior, 31 (2014), 294-304. https://doi.org/10.1016/j.chb.2013.10.046 
Lallmahomed, M. Z., Rahim, N. Z. A., Ibrahim, R., & Rahman, A. A. (2013). Predicting different conceptualizations of system use: Acceptance in hedonic volitional context (Facebook). Computers in Human Behavior, 29(6), 2776-2787.
Lee, M. C., & Tsai, T. R. (2010). What drives people to continue to play online games? An extension of technology model and theory of planned behavior. International Journal of Human–Computer Interaction, 26(6), 601-620. https://doi.org/10.1080/10447311003781318 
Lee, S., & Kim, B. G. (2017). The impact of qualities of social network service on the continuance usage intention. Management Decision, 55(4), 701-729. https://doi.org/10.1108/MD-10-2016-0731
Lin, H.-F. (2009). Examination of cognitive absorption influencing the intention to use a virtual community. Behaviour & Information Technology, 28(5), 421-431. https://doi.org/10.1080/01449290701662169
Linares, M., Gallego, M. D., & Bueno, S. (2021). Proposing a TAM-SDT-based model to examine the user acceptance of massively multiplayer online games. International Journal of Environmental Research and Public Health, 18(7), Article 3687. https://doi.org/10.3390/ijerph18073687
Liu, D., & Baumeister, R. F. (2016). Social networking online and personality of self-worth: A meta-analysis. Journal of Research in Personality, 64 (2016), 79-89.
Lowry, P. B., Gaskin, J., & Moody, G. D. (2015). Proposing the multi-motive information systems continuance model (MISC) to better explain end-user system evaluations and continuance intentions. Journal of the Association for Information Systems, 16(7), 515-579.
Lowry, P. B., Gaskin, J., Twyman, N., Hammer, B., & Roberts, T. (2013). Taking ‘fun and games’ seriously: Proposing the hedonic-motivation system adoption model (HMSAM). Journal of the Association for Information Systems, 14(11), 617-671. https://doi.org/10.17705/1jais.00347 
Midha, V. (2016). Cognitive absorption an empirical examination of 3-D immersive virtual world users. AIS Transactions on Replication Research, 2(1), Article 1. https://doi.org/10.17705/1atrr.00008 
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879- 903.
Pelet, J. É., Ettis, S., & Cowart, K. (2017). Optimal experience of flow enhanced by telepresence: Evidence from social media use. Information & Management, 54(1), 115-128.
Philip, A. V., & Zakkariya, K. A. (2016). Big five personality traits and social media presence: Some research insights. BScan – A Biannual Research Journal of Management and Socio-Economic Transformation, 1(1), 65-72.
Philip, A. V., & Zakkariya, K. A. (2020). Effective engagement of digital natives in the ever-transforming digital world. In: George, B., Paul, J. (Eds.), Digital Transformation in Business and Society (pp. 113-125). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-08277-2_7
Rosen, P., & Sherman, P. (2006). Hedonic information systems: Acceptance of social networking websites. AMCIS 2006 Proceedings. 162. https://aisel.aisnet.org/amcis2006/162
Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., & Orr, R. R. (2009). Personality and motivations associated with Facebook use. Computers in Human Behavior, 25(2), 578-586.
Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Information & Management, 42(2), 317-327.
Shang, R. A., Chen, Y. C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42(3), 401-413. https://doi.org/10.1016/j.im.2004.01.009 
Silver, L., & Huang, C. (August 22, 2019). In emerging economies, smartphone and social media users have broader social networks. https://www.pewresearch.org/internet/2019/08/22/in-emerging-economies-smartphone-and-social-media-users-have-broader-socialnetworks/
Statista (June 2022). Leading countries based on Facebook audience size as of January 2022. Retrieved June 25, 2022 from https://www.statista.com/statistics/268136/top-15-countries-based-on-number-of-facebook-users
Tajeddini, K., Gamage, T. C., Hameed, W. U., Qumsieh-Mussalam, G., Chaijani, M. H., Rasoolimanesh, S. M., & Kallmuenzer, A. (2022). How self-gratification and social values shape revisit intention and customer loyalty of Airbnb customers. International Journal of Hospitality Management, 100 (2022), 103093.
Tellegen, A., & Atkinson, G. (1974). Openness to absorbing and self-altering experiences (“ absorption”), a trait related to hypnotic susceptibility. Journal of Abnormal Psychology, 83(3), 268- 277.
Trevino, L. K., & Webster, J. (1992). Flow in computer-mediated communication: Electronic mail and voice mail evaluation and impacts. Communication Research, 19(5), 539-573.             https://doi.org/10.1177/009365092019005001 
Turel, O., & Serenko, A. (2012). The benefits and dangers of enjoyment with social networking websites. European Journal of Information Systems, 21(5), 512-528. https://doi.org/10.1057/ejis.2012.1 
Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695-704.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research11(4), 342-365.
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences27(3), 451-481.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Webster, J., & Ho, H. (1997). Audience engagement in multimedia presentations. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 28(2), 63-77.
Webster, J., Trevino, L. K., & Ryan, L. (1993). The dimensionality and correlates of flow in human-computer interactions. Computers in Human Behavior, 9(4), 411-426. https://doi.org/10.1016/0747-5632(93)90032-n
Weerasinghe, S., & Hindagolla, M. C. B. (2018). Technology acceptance model and social network sites (SNS): a selected review of literature. Global Knowledge, Memory and Communication, 67(3), 142-153. https://doi.org/10.1108/GKMC-09-2017-0079
Whiting, A., & Williams, D. (2013). Why people use social media: A uses and gratifications approach. Qualitative Market Research: An International Journal, 16(4), 362-369.